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Abstract

To increase the robustness of the feedforward
tracking control system, a new discrete time slid-
ing function has been defined and utilized for the
forrnulation of control law. In adaptive case the
robustness is achieved by using both a normal-
ized gradient algorithm with deadzone and a s-
liding function-based nonlinear feedback, while in
nonadaptive case by using only a sliding {unction
-based nonlinear feedback.

1 Introduction

Wheu the desired position is time varying,the tracking
performance can be significantly improved by the feedfor-
ward tracking controller. For minimum phase systems the
feedforward tracking controller can be designed to achieve
perfect tracking based on stable pole-zero cancellation.

In fact the model/plant mismatches eventually lead
to an imperfect pole-zero cancellation, which in turn may
significantly degrade the tracking performance and even
result in the instabilities of the overall system. Mismatch
in pole-zero cancellation causes the motivation of using
Diophantine equation for constructing sliding function.

In analyzing these uncertainties we adopt the follow-
ing two cases,i.e.,nonadaptive and adaptive. In nonadap-
tive case we construct the nonlinear feedback control law
which is based on discrete time sliding function. In adap-
tive case these uncertainties may cause the divergence of
the adaptive process, which has been resualted in the intro-
duction of deadzone in the estimator to bring the robust
results in the adaptive control system(Egardt 1978,Sam-
zon 1983, Joannou and Kokotovic 1983, Kreisselmeier
and Anderson 1986 ).

Deadzoue and sliding boundary tayer is intended to
provide robustness in control system against modeling er-
rors. In this paper we try that their design concept be set
up on the same basis, and try to match some relationship

between then.

2 Robust Discrete Time Tracking
Control

The coutrolled plant is assumed to be representecd by the
following discrete time model:

d et
y(k) = T(B(—)—) w(k) + (k) W

where

o u(k) and y(k) are the measurable input and output
respectively,

e (k) represents the modeling error,

e A(z7') and B(z7') are polynomials of order n and

m respectively in the backward shift operator z7!.

The order n and m as well as the delay step d are
assumed to be known. It is further assumed that
Al: A(z™!) and B(z7!) are coprime.
A2 : | n(k) | < p m(k), where p is a positive scalar and

" m(k) is defined by

mk)y =0 mlk ~ D)+ uk 1) | +]ylk-1)], (2)

with0 <o <1

A3 18l < py, where 8 = [a;. --+, @, by ---. byl
and p, is a known positive scalar.

The plant (1) can also be expressed as

y(k) = 87 di(k) + m(k) )
where
or(k) = =yl — D). —y(k ~ n), u(k - d).
oulk - d = m)|.
mk) = Az nk).
Then it follows from A2 — A3 and (2) that
(k) | = [ AT k) 1< v wm(k) ()
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vy = L+ po”"n )]

In this paper we propose a robust discrete time track-

ing control by combining pole/zero cancellation and dis-

crete time version of sliding control. For assignment of

closed loop poles and setting the structure of the control
systemn, we utilize the following Diophantine equation.

Dz = AETHS T + 2 Rz (6)

where
From equations (6) and (1), the following equation is
derived.

Dz ylk) = 87 a2k — d) + m(k) (™

where Ri(z7') , Si(z™Y) and Di(z7!) are polynomials of
order n-1,d-1 and n respectively in the backward shift

operator 7.

97
b1 (k)

fboy - bmSa_ 1y Too T oy Pacils (8)
[u(k),u(k ~ 1), u(k = m-—d+1),
sk y(k =1, yk —n+ DL (9)

It

Il

and m(k) is expressed as follows

(k) = 81 dy(k) (10)

To derive the bounds of | 01 ¢2(k — d) | and | m(k) | it
is necessary to have the following assumption.
Ad: |64} < pa, where Odr = [s; 0, Saory Tovs o Taoa)

and p» is a known positive scalar.

Proposition 1 |07 dotk —d) | € K 077 in(k).

where v = maz deg(n, m+ d),
K= (m+ )p + (m+1)(d - D)prpa + npa.

It follows with assumptioun A4 that

Pmlk) I=] A7) Si(z™Y) n(k) | € vapm(k)  (11)

with

vy = 1+ 3pipan(d — 1) gD (12)

In designing a robust discrete time tracking controller
we define s(k) by

*(k) = Dl(zhl)[y(k') - ym(k)]

and add a control loop with s(k) to compensate the
modeling error m(k). Outside the bonndary layer (| s(k) |
> &) as well as inside the boundary layer (| s(k) |< @)
the control law becomes

(13)

- s(k
n(k) = gl-—[s(k)Ak Dl(fl)ym(k-hi.)*()._,Trj)g(k)<—Ksa.t{-s-((p—)}]
4] .
(14)
where
+1. for &< s(k),
for — @ - s(k) =~ @ (15)
—1. for s{k) < -,

| @
I?r‘
—
it

and 0, and $,(k) are defined by

I (16)
$1(k) = [uk), &7 (k)] ()

Proposition 2 For arbitrary dy > 0 there exists a
po > 0 ( which depends on dy) such that for all 0 <
p < 1o and arbitrary initial conditions, it follows that

| 5(k) | do m(k)
where dy = vypy,

Proposition 3 m(k} is bounded, in turn u(k) and y(k)
are bounded.

The condition that ® and K satisfy will be explained
in theorem 1.

Notice that from Fqs (13) and (14), s(k) satisfies

s(k +d) = s(k) + m(k +d) — Ksat{s—(g—)} (18)

The robust stability of the robust discrete time track-
ing control system is proved in the following theorem.
Theorem 1 Robust Stability of the Robust Discrete
Time Tracking Control System :

The robust discrete time tracking control system,
consisting of the plant (1) and the control law (11), is
stable in the sense that | s(k) | decreases when | s(k) |
> & and that the steady state value of s is hounded
hy &.

Proof: Introduce the following discrete Lyapunov fune-
tion candidate

Vik) =] s(k) | (19)

which can be interpreted as the distance to the surface
s(k) =0.

Then we can formniate the followig difference equa-
tion.
Vik + d) — V(k)
| s(k +d) | — | a(k) |
[ s(k) + m(k +.d) — K sgn{s(k)} |
— | s(k) | (20)

AV(k +d) =

il

Based on the Proposition 3 let us assnme that the

upperbound of modeling error is constant, i.e.
| m(k) 1< vapmik) < Fy (21)

where I is a bounded scalar. Then the following a couple
of condition on I make (20) negative.

K~ Foo K = 2] s5(k) | ~F, (22)

If IX is selected as tollowing

K = Fy+ o

— 288 —



Then (19

) will be a Lyapunov fuuction in the following
region. ‘

| si(k) > Fa + 2 (24)
Inside the boundary layer, the s-dynamics become :

sk +d)y=(1- I—;)s(k)+rr_>(k+d) (25)

The boundary layer thickness @ can be selected such that
(25) shows characteristics of a first-order filter with input
m(k + d) and eigenvalue.

1- %, =) (26)
From (23) and (26):

Fy 41 -

¢ = TN (27)

From the stability viewpoint the following relation should
be satisfied.

{1—%|<1 (28)

For a stable eigenvalue X the steady state solution be-
comes:

fim s = fim 55 ¥ e =3 <) (29)
From (29) the following relations are derived.
lims) | < {LH X+ [AP+} B2 (30)
i s 1S =7 P < (31)
lkll_r{)lo stk)| < @ (32)

3 Robust Adaptive Discrete Time
Tracking Control

To maintain the control objective for a plant with up-
knowu dynamics due to modeling error in real time, pa-
rameter adaptation schemes coupled with the control law
needs to be investigated. A standard approach to incor-
perate the adaptation scheme with the control law in sta-
bility analysis is to guarantee that a norm of the difference
between estimated parameters and actual parameters de-
creases at each step. Deadzone concept has been utilized
in mogt robust adaptive schemes. In this paper we apply
normalized gradient parameter estimator as our adapta-
tion scheme.

The algorithm is given by:

a(k)p2(k — d)D(e(k). d(k))
&3 (k — d)da(k —d) + ¢

where k > d, 0 < a(k) < 2, ¢ > O,and D(e(k).d(k)) is

the continuous function defined by

D (e(k). d(k)) = { 8.(") -

(33)

ba(k) = ba(k — 1) +

d(k)sgnie(k)}. if]e(k)|> d(k
otherwise.
(34)

Dy(z"" ) ym(k -+ d)

and :

e(k) 05 ¢y(k ~ d) + my(k) — 05 (k — 1)a(k — d)

67 (k ~ 1)a(k — d) + m(k) (25)

il

I

Proposition 4 The estimation algorithm defined by
(33) — (35),when applied to plant (7),has the following
properties:

It
<

(36)
(37)

Jim 162(k) ~ Bk — 1))
Jim D(e(k), d(k))

I
<

In the notation of this section the control law (14)
becomes:

u(k) = [s(k) +Ds (2 "‘)ym(k+d)—(3zr$-_,(k)+l(sat{%H

(38)
A reasonable criteria to use in shifting from the non-
adaptive to adaptive controller is whether s is inside or
outside the boundary layer. That is, when inside the
boundary layer, the control law of (38) is used and adap-
tation does not occur. The control laws should be contin-
uous at the bounndary layer edge. For this purpose, note
that the non-adaptive control law of (38) takes on the
following value at the boundary layer edge.
1 ~T
u(k) = -"(Dn(z_l)ym(ker)*f’z da(k)-+APsgn{s(k) H(39)
The control law of (39) reduces to :

X® sgnis(k)} + bou(k) + Baa(k)
= A sgn{s(k)} + bada(k) (40)

Recalling (7) :
Di(z"")y(k + d) = Ba6o(k) + m(k +d)  (41)
From (40) and (41) the s-dynamics becomes :
s(k + d) = A& sgn{s(k)} + Godba(k) + m(k + d) (42)
Comb.ining (42) and estimation algorithm yields :

[s(k) — Adsgn{s(k - d)} — d(k)sgnie(k)}}?

Jm oI (k — dyda(k — d) + ¢ =0(43)
e(k) = s(k) — AP sgnis(k — d)} (44)

Now select d(k) as
(k) = (1 - \)® (45)

From (27) , this guarantees that d(k) > F, as required.

The condition on adaptation remains as | e(k) |> d(k),
which from (44) and (45) is met if | s(k) | ® ( being ont-
side the boundary layer ). With this condition satisfied,
from (44) it can be seen that sgn{e(k)} = sgn{s(k)}, and
so using (45), (43) becomes :

i [3(E) = @ sgnis(k — )}

e Bk S el —d ke (46)
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Note that condition (1) of Key Technical Lemma{Goodwin
and Sin 1984) is satisfied, with p(k) = s(k)—® sgn{s(k)},
bi(k) = ¢, ba(k) = 1, and (k) = d2(k ~ d). This choice of
bi(k) and by{k) also satisfies coudition (2). To show that
condition (3) of the lernna is satisfied, it is necessary that
[s(k) — d(k)sgn{s(k — d)}] linearly bounds ¢(k — d). This
can be doune by first showing that y(k) linearly bounds
d(k — d). Notice that ¢(k — d) is made up of functions
of the ontput y(i), k- n + L < i < k and of the control
input u(i).k — m—-d+ 1 <1 < k. Since the parameter
estimates remain bounded due to the bonndedness prop-
erties of the parameter estimator, y(i) and u(i) are also
bounded as it was demonstrated by Proposition 3. To
demnnstrate that [s(k) — & sgn{s(k —d)}] linearly bound-
s y(k), recall that the selection of function s(k) in Section
2 established the ability to set the dynamics on the slid-
ing surface as desired. Since s(k) is bounded and yn(k)
is assumed to be bounded, s(k) can linearly bound y(k).
So [s(k) — ® sgn{s(k — d)}] linearly bounds y(k). With

all conditions of the Key Techuical Lemma satisfied, this
allows for the results that #(k — d) is bounded for all k
and that

knlg['s(k) ~ & sgn {s(k - d)}} = 0.

The results thus proved is summarized in the following
theorem.

Theorem 2 Robust Stability of the Robust Adaptive
Discrete Time Tracking Control System :

The robust adaptive discrete time trucking con-
trol systern, consisting of the plant (1),the controller
(38),and the adaptive law (33) - (35) satisfying (45),
is stable in the sense that | s(k) | decreases when
| s(k) | > ¢ and that the steady state value of s is
bounded by P.

Both in adaptive and in nonadaptive case we have ar-
rived at the robust same results.

4 Conclusion

Based on the Diophantine equation a new discrete time s-
liding function has been defined and utilized for the robust
feedforward tracking control law. The sliding boundary
layer is composed of eigenvalue in s-dynamics and of np-
perbound in modeling error. The modeling error which
ultimately affects on the tracking performance is diluted
in_the sliding boundary layer, which results in increase of
robustness. Parameter estimator with a new deadzone is
proposed to robustly estimate the unknown parameters of
plant. Using eigenvalue as an intermediate variable,the re-
lationship between deadzone and sliding boundary layer is
derived to provide compatibility in robust control paraun-
eters. In adaptive case the robustness is achieved by ns-
ing both a normalized gradient algorithm with deadzone
and a sliding function-based noulinear feedback, while in
nonadaptive case by using only a sliding function -based
nonlinear feedback.
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