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ABSTRACT

Convergence of the state error e to zero in adaptive systems
is shown using the uniqueness of solutions and the existence
ol a Lyapunov function in which the adaptation laws are
constructed. Results in the paper are genceral, and therclore
applicable to any adaptive control of a lincar/nonlinear, time-
varying or distributed-parameter system. Since the approach
taken in the paper does not require the boundedness of the
derivative of the state error e for all 1 2 (), it is particularly
usclul in the adaptive control of inlinite dimensional systems.

I INTRODUCTION

When a new control algorithm or a mathematical modecl for
a physical system is proposed, it is natural to investigate
whether the proposed algorithm or the model provides
existence and uniqueness of forward-time solutions for all
possible initial data, otherwise control action can nol he
continued {orward in time forever or the mathematical equation
does not accurately describe the physical system. Once the
existence and uniqueness is assured then the stability of the
algorithm or the model is investigatced. However in the area
of adaptive control the order is interestingly reversed: An
adaptative control algorithm is first derived considering the
stability and then the existence of solutions for ali t 2 () is
assured. In this paper the asymptotic convergence of the state
crror to zero in an adaptive system is shown using the
existence of solution and a Lyapunov function. This reveals a
fundamental fact in an adaptive control of a general system that
it the adaptation law is derived in the way that

\./'(x,y.z)s—a(||x||), where V is a Lyapunov function, x

denotes the error dynamics between plant and model, and ()
is a monotone function, then the trajectory of the plant follows
that of the model.  Although the approach taken in the paper
provides a different proof for the convergence analysis in the
finite dimensional adaptive control, it is particularly useful in
the adaptive control of distributed parameler systems since it
does not require the boundedness of the state error derivative
forall 12 0.

In the adaptive systems utilizing the Lyapunov direct
method in constructing control law, the adaptation laws are
derived in such a way that the time derivative of the Lyapunov
function V is negative semi-definite, which implics that the
origin is (uniformly) stable (in the large). Therefore even if it
is nccessary to assure the existence and unigueness of
solutions for all t 2 () before the application of the Lyapunov
method, the existence and uniquencss question of the closed
loop adaptive system comes naturally after the assurance ol
stability since the feedback adaptative controt law is designed

in the fashion that stability is guaranteed. However the
obtained overall adaptive system does not admit the global
Lipschitz condition which suffices the global uniqueness.

The analysis of adaptive systems consists of investigating
the stability and the asymptotic behavior of the solutions. The
fundamental idea of the model reference adaptive control for
the finite dimensional system is well documented in (Narendra
and Annaswamy, 1989, p.99; Sastry and Bodson, 1989,
p-99) using a scalar differential equation. Outlining briefly,
the adaptative control law consists of some adjustable
parameters which permit the closed loop equation to coincide
exactly the reference model equation when the tuning
paramelers converge to their nominal values. The stability of
the whole adaptive system is obtained by considering a
Lyapunov function and making it to be negative semi-definite.
The Lyapunov function involves the state error defined as the
difference between the plant and the reference model, and the
parameter errors defined as the differcnces between the current
parameter values and their nominal values. Since the
adaptation laws are derived in the way that all terms involving
the controller parameters in the derivative of the Lyapunov
function cancel out each other, the global uniform stability of
the origin is at most obtained. Finally to assert
lim, , e(z) =0, two facts are used in the literature (Narendra
and Annaswamy, 1989, p.85; Sastry and Bodson, 1989,

p.19; Slotine and Li, 1991, p.123). One is e(f) e I}(0,00)

and the other is that e(¢) is bounded for all ¢ > (), which enable
the application of the Barbalat’s theorem. Fortunately in the
finite dimensional adaptive system the second fact follows
from the Lyapunov function and a nature of finile
dimensionality. Also further analysis reveals that the
persistency of excitation of the reference input makes the
whole adaptive system to be exponentially stable.

Compared to the finite dimensional case the adaptive
control of infinite dimensional systems is not well understood
and has only recently been studied. Wen (1985) proposed
adaptive control laws and analyzed the Lagrange stability of
direct model reference adaptive control in infinite dimensional
Hilbert space by using command generator tracker approach.
Hong and Bentsman (1992b.c; 1993; 1994) have investigated
a direct adaptive control of paraholic systems and analyzed the
stability using the averaging method. One of the main
difficulties in synthesizing control algorithms for a distributcd
parameter system is obtaining the stability of whole closed
loop system (Hong and Bentsman, 1992a; Hong and Wu,
1992; Wu and Hong, 1994).
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Now we consider the tollowing example of infinite
dimensional adaptive control of parabolic partial differential
equation {Hong and Lee, 1993), and obtain the asymptotic
convergence of the state error to zero without relying on the
Barbalat's theorem. The example below is taken for the
purpose of illustrating where and how the Barbalat’s theorem
is not easily applicable. Parabolic partial differcntial cquations
arise in many physical, biological and engineering problems,
for instance in the arca of heat transfer, nuclear reactor
dynamics, chemical reactions, crystal growth, population
genetics, flow of electrons and holes in a semiconductor,
nerve axon equations, hydrology, petroleum recovery area,
and fluid mechanics. For more examples (Friedman, 1969;
Henry, 1981) and their references arc rceferred.  For

vibrational control of parabolic systems (Bentsman and Hong
1991, 1993; Bentsman et al., 1991, 1992) are mentioned.

Example : Consider a class of distributed parameter
systems described by a lincar parabolic partial differential
equation with spatially-varying coefficients as

4
%ept) —9[ ( )95(” ))+b(p)é(p,r)+u<n,t),t>0
ot a
(1.1

where 1 is the time, peQc R denotes the spatial variable,
and u(p,t) is a control input function. a(p) and b(p) are
unknown but a(p) > () is assumed to be parabolic. Boundary
and initial conditions are given as

Sp.=P@), pedQ

Sp, =&, (p).
It is assumed that a(p), b(p) and the boundary data f(r) are
analytic in their appropriate domains. 1t is also assumed that
B(r) is a priori known, and distributed sensing and actuation
are available. A reference model is defined as

9nlpt) _ 9. am(p)M]+bm(p)ém(p.t)+ r(pu)t>0
ot ap op

Sn(pt)=P(t), pe I
Sn(P0)=¢,,(p)

(1.2)
where r(p,t) is a bounded reference input. Tt is assumed that
a,(p)za,>0,b,(p)<0, ll)m(p)|2 b, >0, and that
a,(p) b, (p) are analytic in Q. Now consider the following
control law u(p,t) with adjustable parameters ¢,(p,t) and
¢,(p.t) such that

NZA0A)

u(p,t)= !—%{%(N) o )+ 0, (p.OYE(p.)+r(p,t).

(1.3)

The closed loop plant equation becomes identical to the
equation of the reference model when lim,_,_ @,(p,f) = ¢, and
m,_,. ¢;,(PJ) =
functions defined as
$,(p)=b,(p)=b(p).
e(p.ty=E(p,1) - & (p,), and the controller parameter errors
v, and v, as v (p= ¢,(p.H-¢.(p) and

v, (p,0)=0,(p,r) — ¢,(p), respectively. Subtracting (1.2)
from (1.1) yields the state error equation with homogencous
boundary conditions as

¢;, where ¢;(p) and ¢;(p) are nominal
¢.(pY=a,(p)-a(p)

Define the state error e as

and

a('(p,t) 8 E)((p 1)
v am(p)

b \
n ap )+ m(Pe(p.t)

LYt
+ap(“'”(p") ap
e(p.)y=0, pedQ

J+ Wy (p.DE(p.1)

(1.4)
e(p.0)=&,(p)=-¢&,,(p)
Consider the adaptation laws given by
99, (1) _ _de(p.t) 95(p,1) 0) = Is
€ o 0P =9, (1.5)
PP - o)1) 0,0 = 0, (1.6)

where € > () is the adaptation gain. Then by considering a
functional V:(LZ(Q))3 - R as

V(e,u/,‘,y/b)z—--[ (e (p.t)y+— (V/ (p.H+ V/,,(p, ))dp

and differentiating V with respect Lo 1 along the trajectories of
(1.4)-(1.6) employing integration by parts and boundary
conditions yields

av _ n[ r )(ae(p,r)) . ,)m(p)ez(p’,)},p

dt

s-b,,jne’(p,r)dp (1.8)

Thcrcffrg' the global uniform stability of the origin (i.e.
(e.Wq. Wp) =(0,0,0)) in LZ(Q)3 is concluded. Furthermore
(1.8) implies that e(p,n) e L,(Qx[0,=)).
assertion that lim,_, lle(p.1)], =0 is not obvious through a
similar analysis as the case of finite dimensional system which

However the

requires the boundedness of e.’(p,r) in (1.4).

This paper develops a new approach in asserting the
convergence of the state error to zero which does not rely on
the Barbalat’s theorem. This approach is applicable to any
adaptive systems which is constructed in the way that (i) the
existence and uniqueness ol solutions is assured, (ii) there
exists a Lyapunov function which determines the stability of
the overall adaptive system, and [finally (iii)

a(||e||x)e L;(0,00), where e is the state error of an adaptive

system, ¢(s) is a monotone function with o(0) =0, and ||,

denotes a norm in a Banach space X. This approach is
particularly crucial in the adaptive control of infinite
dimensional system since it does not require the boundedness
of the derivative of the state error forall £ 2 0.

IL. FINITE DIMENSIONAL ADAPTIVE SYSTEMS

The adaptive control of finite dimensional systems is now
well developed. In this section we revisit the finite
dimensional case and show that the asymptotic convergence of
the state error is well guaranteed once the adaptation laws are
designed using the Lyapunov redesign method. Let a general
finite dimensional adaplive system of a linear/nonlinear. time-
varying plant with bounded external disturbances be given in
the following form as in the work of Polycarpou and Toannou
(1993).

%= £ty x0) = %, @
v=gltxym, y0) =, 2.2)
n= =8N+ h(r,x,y) NO) =1, (2.3)

where xe R", ye R”, ne R and §,> 0 is a constant. f g
and h are in general nonlincar time-varying functions. The
state x represents the error dynamics between the closed loop
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plant with filters and the model. The state y denotes the
estimaled parameter vector which is referred to as the

adaptation law. 1 is a design variable known as the
‘normalizing signal. The explicit dependence of the functions
/. & and & on t could be due to time variation in the plant
parameters and/or exogenous signals such as plant
disturbances and reference input.

Assumptions

(AD) f(£,0,00=0. g(+,0,0,n)=0. f, g and h are piecewise
continuous in t, and are continuous in other variables.
Furthermore fand 4 are locally Lipschitz in x and y. g is

locally Lipschitz in x, y and 1.
(A2) @ |/ x ) < agOIN +cp, V1 20 2.4)
) it xy)| € O + g Dl + ¢, V120 (2.5)
where ¢g, ¢ are conslants and @, 0, 05:R™ — R* are
bounded for [inite values of y.
(A3) there exists a function V:R™" — R* such that
kJC + kol s VCxmy <klOf +k ) 2.6)

where Ky, ky, ks, k, are positive constants, and Ce R'*" is a
constant matrix.

The overall adaptive system does not admit the global
Lipschitz condition in general. However if there exists a
Lyapunov function for the whole adaptive system, the
existence and uniqueness for all t 2 () can be asserted from the
Lyapunov function together with the local existence and
uniquencss resulting from the condition (A1) (Narendra and
Annaswamy, 1989, p.117, Comment 3.2). Furthermore if a
considercd Lyapunov function involves only part of the state
of the whole adaptive system like (2.6), the global existence
and uniqueness can still be obtained with the conditions like
(A2). For completencss this is summarized in the following
Lemma (Polycarpou and Ioannou, 1993).

Lemma : Consider an adaptive system (2.1)-(2.3) with the
assumptions above. Assume that

V(Cx, ) <0. (2.7)
(2 1)-(2.2)
Then there exists a unique solution of (2.1)-(2.3) defined for
all 1 e|(),00).
Proof: The proof lotlows (polycarpou and Toannou, 1993).
Defining z=[xT.yT, " with z(0) = [x7©), yT (), nO)I",
(2.1)-(2.3) can be rewrilten as

. flxy) X,
z=p(t,2)=]  glxym Z0y =]y, |-
=8, +h(t,x,y) n,

Since p is locally Lipschitz in z, by the standard local existence
theorem (sce Hale, 1969) there exists a unique solution
defined on an interval J; ={0,T) lor some T > (). Also the
existence of a Lyapunov function V satisfying (2.7) implies
that a set Eg={(Cx,y:V(Cx,y)<B,BeR") is positive
invariant. (The possibility of existence of a finite escape time
is removed by the function V with (2.7)). Hence
(1)< B,Vt 20, where B is a constant not depending on 7.
Now in the rest of proof it will be shown that neither any
component of the state x nor 17 docs “explode” in [inite time.
The solutions of (2.1) and (2.3) on the interval Jy are

x(0) = x(0)+ || f(z.x(2),3(D)de. (2.8)

N =e % n0)+ j(; "% D1, x(1), y(D)dT, (2.9)

respectively. Taking norms on both sides of (2.8) using the
condition (A2-a)

IOl Il + [} (e 0ilecol + ¢, )z

— [ _CL
<o+, [ [[]x(f)[[ ta ]dr

where @, ﬁsuply(l)l(n o, (y(1)).
Gronwall’s inequality yields

"x(t)||5(||x(0)|| + _io_j X
Oy

forall te Jr. Similarly using (2.10) and the assumption (A2-
b) in (2.9) obtains

| <c, +cpe™ ' Ve Jy

for some constant ¢}, ¢;, @ 2 0. Therefore the solutions can
be continued past t =T and since the solutions cannot grow
faster than an exponential function, they can not have [inite
escape times and thus the solutions exist and are unique for all
te[0,). QED.

Remark 1: In the special case that C =/, the condition
(A1) and the Lyapunov function (2.6) satisfying (2.7) are
sufficient for the global existence and uniqueness of x(t)

and y(t). Taking C =1 will not lose any generality in anatysis

Applying the Bellman-

(2.10)

since those components of the veclor x corresponding to the
filters can be specifically included in the Lyapunov function.
In this case both vectors x(¢) and y(r) are both bounded by

some constant B for all 1 2 0. Observing the boundedness of

x(t) and y(¢), the boundedness of the state error derivative
can be obtained relying on some conditions like (2.4) or
directly (2.1) in finite dimensional case.

Theorem 1. Consider an adaptive system (2.1)-(2.3)
with the assumptions above. Assume that

V| <-ald).
(2.)-(2.2)
where a(e) is a monotone function with (0)=0. Then
x(t) >0 as t D eo.

Proof: Let the unique solution of (2.1) at time ¢ slarting
with initial state x(s) at initial time s be of the form

t
x(t) = x(s) + j‘ F(T.x(0),y(D))dT (2.12)

and denote it as x(f) = x(t,x(s),s). Define a two parameter

2.10

family of map S(z,5) on R" as

S, 5)x(s) = x(t, x(5),5), 0L5<t <00, (2.13)
Then by the uniqueness and continuous dependence of the
solutions x(t) = x(t,x(s),s) on the triple (¢, x(s).s), the

mapping S(t,5) on R" becomes an evolution process such
that (Walker, 1980, p.12)

(i) S(=s5)x(s):R* — R" is continuous (right continuous at
t=y)

(ii) S(t,®)(*): RxR" — R" is continuous

(i) S¢s,5)x(s) = x(s)

iv) S(t5)x(s) = S, r)S(r,.s)x(s), for all x(s)e R" and
0<s<r<t<eo.
Note also that the condition (2.11) implies that

|, oS00, [) di < . (2.14)

Indecd, the conclusion of the thcorem can be proven by
contradiction. Suppose S(1,0)x, 4 0 as t — oo, then there
exist an € > () and an infinite sequence ¢; — oo such that

Isc;.00x,| 2 e.
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Now however small the € is, there exist constants M >0 and
£, >0 such that
Mz aq, = SUPy(gep o, (y(1)), and

£ ¢ v
-—I’,’,-2£,,>(). (2.15)

e
Note that if ¢, =0, (2.15) is always satisfied. Therefore

taking norms on both sides of (2.12)
!
ol <)+ M(H.\'( o+ %4”—)(11’.

Applying the Bellman-Gronwall's inequality yields

bt (frco+ 2 Jowe=n

forall r=s20.
Now without loss of generality we can assume that

L=t >M7OF we set A=[r,-M' 1] then

m(Aj) = M0 (m= Lebesgue measure) and the intervals

(2.16)

Aj donotoverlap. Forre A;
e <|st;.00x,|

—||S(1J,r)€(t ())r

C M, -t
<l x(f)+-2% !
(r() Al)e

¢
S x()+—=2 e
(r() ﬁlj(’

where the sccond incquality above is obtained from (2.16).
Therefore we have
iz e,

MMmA:uqﬂ t;1. Hence

Jo el

=[ser,.nx(of

(H EJ.

J dr
= a(Eu)im(A].)

contradicting (2.14). Thu‘s Wc must have x(£) = 0 as t — oo,
Q.E.D.

(/(.

v
W Mi u

Remark 2: The above theorem suggests the following
general design procedure.  Designing a modcel following
adaptive system consisting of a plant, a model, filters, wners
and somc normalizing signals, 1) derive an adaptative controt
faw which permits exact equation matching hetween the plant
and the model when the adjustable paramelers in the controller
converge to some values, i) assurc the existence and
uniqueness of solutions, iit) there exists a Lyapunov function
for the whole adaptive system and the derivative of the
Lyapunov tunction is of the lorm

V< -afl)
where x is the state error between plant and model, and o is

monotone. Then lim | x(r)=0.

(st
Remark 3: Note that (2.14) must hold for all initial
conditions x, € By = (x:f] < B} due to the positive invariance

of B,. Therefore (2.14) excludes the typical situation that fin

(2.1) is a function of only ¢ and y. Indeed if fis of the [orm
(this will never happen in an adaptive control sincc x denotes
the plant with filters)

x=f(ry) x(0)=x, (2.17)
the solution is of the form
x(0) = x,+ [ f(r.y(@)dr, (2.18)

Then (2.14) is never achieved for an arbitrary x, #() because
(2.14) can be satisficd for one particular non zero x, by

offsetting the second term in (2.18) but not for all initial
conditions.

Remark 4: The above theorem also concludes the
following. In general x(r)e L (0,0) docs not imply
tim, |, _x(1) = 0. The unilorm continuity of x(¢) is needed as
is shown in the Barbalat's theorem. However besides the fact
that x(r) € L,, if the signal comes through a dynamical system

as 1 = f(1,x,v), where a unique solution exist for all t 2 0 and
v is a hounded parameter, then lim,,_x(¢) =0. Let us take a
pathological signal x(s) which belongs to L, but does not
tend to zero (this signal will violate the uniform continuity
condition for all t 2 0)). And let the derivative of x(¢) be {(r).

Then x(1) can be considered as a signal generated through a
dynamical system of the (orm

x(D) =L@, x(N)=0
which is exactly the form of (2.17) and the only O initial
condition will provide x(f) € L,.
The above observation is summarized in the following
corollary.

Corollary: Let x(1)e L,(0,0),p21, and bc a unique

m

solution of .;c=f(r,x,y), xeR', yeR" where y is a
bounded parameter. Let f satisfy |f(t,x,3)| < a(y)x]+c,,
where ¢, is a constant and @(e) is bounded for a finite value
of y. Then lim,,_ x(r)=0.

II1. INFINITE DIMENSIONAL ADAPTIVE SYSTEMS
The overall adaptive system of the Example in Section ¥ can
be represented as

= ((nm +y,)e )' +b, +w,Je+ (wagm' )' +yé

3.1

e(p.=0.pede(p.0)=e,
v, =g (e' +§m'), v,(p.0)= v, (3.2)
v, =—cele+& v, (p.O=v, (3.3)

where » and ¢ denote the derivatives with respect to £ and .2
respectively, and &, (p,1) is an cxogenous signal.
Subslituting (3.2) and (3.3) into (3.1), (3.1) has the form

e=B(t,e)e+g(t,e) (3.4)
where

B(r,e)e = (({l,,l + Y0 t ej;((g' )2 + g‘ Xr”' )(If)(o)' )
+(l),,, + ¥Ybo — ej.(;(e‘? +- ex,,,)/llj .
glre) = ((W(m + E'J.:)(("' )2 e gm' )d’ )‘gm')
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+(‘Vho = EJ.(;("Z +eb,y )d')gm
Since & (p.t) is smooth, there exists a t,> (0 such that the
principal term of (3.4) is strongly elliptic for all 1 €[0,1,1, i.e.
<-B(t,e)e,e>2c<ee> Vtellt,], ¢>0.
Therelore (3.4) is parabolic (Friedman, 1969, p.134), and
there exists a unique solution for ¢ €]0,1,]. Typical values of
those o, 6, p on page 170 of (Friedman, 1969) for (3.4) can

be chosen as o = 1/2, and 0 = p = 1. Finally the Lyapunov
function defined as in (1.16) ensures that all solutions belong
to a closed bounded set, and hence their existence for all r > 0
is guaranteed as well.

Theorem 2: Consider an evolution equation as

;(t)+ Aly®)x(t) = ft.x,y) x() = x, 3.5)
.;'(') =g(t,x,n), y() =y, (3.6)
n(0) = =8, n(1)+ h(r.x.y), NO) =1, 3.7)

where x,y,ne X, X is a Banach spacc and §,> 0 is a
constant. Let the state x denote the error dynamics between
plant and model, the state y represent the parameter vector to

be tuned, and 1 refer some normalizing signal. Assume that

(i) there exist unique solutions to (3.5)-(3.7), and the
unique solution of (3.5) has the form

x(1) =, 0)x, + L;d>(r, T)f (e, x(1), y(1))dT (3.8)

where ®(r,5) is an evolution system corresponding to
-A(y(0).

() @ |ftx i< aOixl+co, V120

®) it x| < O + I+, V20

where cg, ¢; are constants and o, @, 05: X = RY are
bounded for finite values of y.

(iii) there exists a functional V: Rx Xx X = R* such that

2
K + kb < etz < lel” + kbIP
where k;, k,, k3, k4 are positive constants.

(iv) there exists a continuous non-decreasing function c(e)
with a(0) = () such that

\./(r. x,y) < — o|xh).

(3.5)~(3.6)
Then |x(D] > 0 as t — e,

Prool: Using contdiction, a similar strategy as in
Theorem 1 is applicd. Suppose that lx(r)] » 0 as t — o,
then there exist an € > 0 and an infinite sequence f; — o= such
that

=0,
where §(¢,0)x, is the unique solution of (3.5) starting at initial
condition x, at time ). Taking norms on the equation (3.8)

with the initial state x(s) and time s using the condition on f
yields

2E

bl < M Jx)l+ [ M (M e + ¢, )d

S Ml MM (H-vmu + v]z

where M, = sup [®C.s)l. and M, is chosen to be
£.0€[0,=)

sufficiently large so that (% ~ 6%42)2 g,>0. Applying
the Bellman-Gronwall’s inequality

e < (Mlux(.v)ll + C—"}’M' Ma(r=s)
M,

forall t2520. Now we take the sequence f; such that
tiy~1;>(MM,)"'. Then the intervals A; defined as
jH1 T 1442 J
A=t~ (MM, )_‘, ;] do not overlap and m(A;)> 0. For
anyre A;

£< [[s(rj O)x,

=|s¢t;.08¢,0)x,

Co Mle i
S(M,X([)"'A—,!—Je =0

2

= "S(zi,r).r(t)"

c
< (M,x(t) + ﬁ';z Je
Therefore we have

Ix(lz €,
forall re Aj, which leads 10 contradiction to the condition

(iv) in the theorem. Thercfore we must have fx(1)] — 0 as
t— oo

IV. CONCLUSIONS

Asymptotic convergence of the state error to zero for a
gencral adaptive control system which includes both finite and
infinite dimensional adaptive systems is investigated. The
method developed in the paper is general and therefore is
applicable to any adaptive system in assuring convergence of
the state error to zero if the adaptive system is construcied in
the way that (i) the existence and uniqueness of solutions is
assured, (ii) there exists a Lyapunov function. which
determines the stability of the overall adaptive system, and

finally (iii) a("eﬂx) € L;(0,0), where e is the state error of an

adaptive system, ¢(*) is a monotone function with a(0) =0,
and |le|, denotes a norm in a Banach space X. This approach

is particularly crucial in the adaptive control of infinite
dimensional system since it does not require the boundcdness
of the state ecror for all £ 2 ().
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