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Abstract

In this paper, the equations of motion are constructed
systematically for multibody systems containing closed kine-
matic loops. For the displacement analysis of the closed
loops, we introduce a new mixed coordinates by adding to
the relerence coordinates, relative coordinates correspond-
ing to the degrees of frecdom of the system. The mixed
coordinates makes easy derive the explicit closed form so-
lution. The explicit functional relationship expressed in
closed form is of great advantages in system dimension
reduction and no need of an iterative scheme for the dis-
placement analysis. This forms of equation are built up in
the general purpose computer program for the kinematic

and dynamic analysis of multibody systems.

1 Introduction

During the last two decades a considerable effort has been
focused on the development of methods and computational
algorithms for mathematical modeling and simulation of
mnultibody systemns. These methods are mainly dealt with
ellective formulation and numerical solution of the dy-
namic equations of a general multibody system. The first
problem encountered at the time of modeling the motion
of a wmultibody system is that of finding an appropriate
system of coordinates. A first choice is that of using a
system of independent coordinates, whose number coin-
cides with the number of degrees of frecdom of motion
of the multibody system and is thereby minimal. The
most itiportant types of coordinales currently used to de-
fine the motion of planar and three-dimensional multibody
systemns are relalive coordinates, reference point coordi-
nates(also called Cartesian coordinates), and natural co-

ordinates(also called fully Cartesian coordinates).

Relative coordinates were the first ones used in the gen-
eral purpose planar and three-dimensional analysis pro-
grams of Paul and Krajcinovic[7], Sheth and Uicker[9],
and Smith et al.[10]. This coordinates define the posi-
tion of each element in relation to the previous element
in the kinematic chain by using tlie parameters or coor-
dinates corresponding to the relative degrees of frecdom
allowed by the joint linking these elemecnts. The advan-
tages of relative coordinates can be summarized as, the
reduced number of coordinates, hence good numerical ef-
ficiency, and suited for open-chain configurations of the
system. However, the followings are considered to be the
most important difliculties of the relative coordinates that
the mathematical formulation can be more involved, be-
cause the absolute position of an element depends on the
positions of the previous elements in the kinematic chain.

The reference point coordinates try to remedy the dis-
advantages of the relative coordinates by directly defin-
ing, using three coordinates or parameter, the absolute
position of each one of the elements of the planar system.
This is done by determining the position of a point of the
element(the reference poiut, which olten is the center of
gravity) with two Cartesian coordinates, and by determin-
ing with an angle the orientation of the body in relation
to a system of inertial axes. The advantages of reference
point coordinates can be listed such that the position of
each element is directly determined; hence the formula-
tion is easier with less preprocessing and postprocessing
requirements, and unlike relative coordinates, constraint
equations arc established at a local level.

Natural coordinates were originally introduced by Gare
ia de Jaldn et al. [1] and Serna ct al.[8] for planar cases,
and Garcia de Jalén et al.[2] for spatial systems. In the

case of planar multibody systems, natural coordinates can
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be considered as an evolution of the reference point coor-
dinates in which the points are moved to the joints or to
other important points of the elements, so that each ele-
ment has at least two points. It is important Lo point out
that since each body has at least two points, ils position
and angnlar orientation are delermined by the Cartesian
coordinates of these points, and the angular variables used
by reference point coordinates are no longer necessary. It
will be seen later on that this simplifies the {formulatlion
of the constraint equations along with the fact that points
can be shared at the joints. Thus the natural coordinates
in the case of planar multibody systems are made up of
Cartesian coordinates of a series of points.
ACUBE(Advanced Analytical Analyzer for kinematics
and dynamics of mechanical systems) soltware is a sct of
general purpose computer programs that can be used to
model and predict the motion of a variety of real world
mechanical systemns using the closed-form solution mod-
ules. Based on a sel of data that describes the machine
to be modeled, the ACUBE builds a mathematical model
of the real system that calculates positions, velocities, and
accelerations of the various parts of the machine, as well
as resultant forces that act in the system. By using the
proposed sollware, the designer can simulate the behavior
ol a wide range of alternate designs prior to building and

testing prototypes of mechanical systems.

2 A New Mixed Coordinates

It was mentioned previously that one of the advantages
of the relative coordinates is the possibility of directly ac-
counting for the relative degrees of freedoin periitted by
the joints. This type of coordinates allows the direct in-
clusion of motors or actuators at the joint with no further
dilliculties. On the other hand, neither natural coordi-
nates nor reference point coordinates have this advantage.
However, mixed coordinates can solve this problem.
Mixed coordinates are obtained by adding, to natural
coordinales, angular or linear variables corresponding Lo

the degrees of freedom of the system joints. When con-

sidering mixed coordinates, joint variables do not replace
the other coordinates; rather they are simply added to
them. When increasing the number of dependent coordi-
nates without modifying the number of degrees of freedom,
one should increase the number of constraint equations by
the same amount. Garcia de Jalén et al.[l] and Serna
et al.[§] formulated the cquation of motion of mechanical
systems with this mixed coordinates.

Some authors as Jerkovsky {4] and Kim and Vander

ploeg [5] use two dilferent coordinate systems in two stages
of the analysis. Tirst, they describe the mechanisim us-
ing reference point coordinates, and then they perform
the analysis using rclative coordinates, hoping this will be
more ellective. This successive use of two different {ypes
of coordinates is also called velocity translormations, and
should be distinguislicd from the use of mixed coordinates.

In this paper, we introduce a new mixed coordinates by
adding to the reference coordinates, the angular or linear
variables corresponding to the degrees of freedom of the
systemn joints and apply the coordinates to the dynam-
ics of mechanical systems containing a compound linkage
constraint allowing relative 4-DOT hetween two bodies i, j
such as shown in Fig.(1). This coordinates has the advan-
tages of easy formnlation of relative degree of [reedom per-
mitted by the joint at local level. As an examiple, Tig.(2)
shows the planar four har mechanism with this mixed co-
ordinates where the relative coordinate is 10y. Those 7
constraint equations with 7 coordinates(l velative one, 6

generalized coordinates) notated by ¥ are obtained as [ol-

lows

(x1 — xo) — & cos ¢

(1 — yo) — Fsingh
| mam ) = Zcos iy + S contis — £ cos(h + )
¢ = (y3 ~w) — Tsinyy + Fsingy— 4, sin(yy + )

(za—2xp) - L cosy
{ya —yp) — Fsinyfy

P —f(1)

which has 1 degree of freedom or 1 independent coordi-
nates, The 7 constraint equations can be combined to be
the single input-output refationship of the input angle, i,

with the output angle, 3 expressed as
01(1,/.’1) sin 11)3 + (12(1/'1 ) cos a3 + Cf‘:;('l/,']) =0 (2)

which equation is called closed form solution of the mech-
anism or analytical kinematic relationship. The another
unknown coordinates, x,, za, ¥4 can be computed straight-
forwardly. As using the analytical relationship, we can
avoid resorting to an iteralive method for the displacement.

analysis of the mechanism.

3 Dynamic Analysis with the In-
dependent Coordinates

The system equation of motion may be written in the fol-
lowing forms of constrained varialional equalions of mo-

tion:

T M7 -Q)=35 (3)
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Figure 2: Four-bar mechanisim with a new mixed coords

for all virtual displacements §7 that arc consistent with

constraints that act on the system where M is inertia ma-

trix and @ is generalized force vector associated with 7.
The combined set of kinematic and driving constraints

is written in the form
(7, t) =0 (4)

Since generalized coordinate variations(or virtual displace-
ments) 67 are considered to occur with time held fixed, the
condition for a kinematically admissible virtual displace-
ment 67 is obtained by taking the differential of Eq.(4)

with time held [ixed; that is,

¢‘7-:5’F =0 ()

where the Jacobian is evaluated at the state # that satis-

fics Eq.(4). Thus, the constrained variational equations of
motion are that Eq.(3) hold for all virtual displacements
67 that satisly Eq.(5).

We can also derive the relationship as

* = 7(3) ®

- -

where § is the independent coordinates. The condition

for kinematically admissible virtual displacements of 6§ is

6F = r(-i&q (7)
Diflerentiating the Eq.(6) with time, we can get the ve-

locity and acceleration relationship as

i ®
F= e+ (Fad)gd 9

QTG =0 (10)

and into Eq.(3), we obtain the form of variational equation
of motion about § as

e faTnre % Tarn o o oTHl -
6q{1'(-]-Mr q+r§hl(1qq)qq qu} 6 (1)
For arbitrary vector 6§, the coeflicients matrix is equal to
zero for satisfying Eq.(10) and (11) in the configuration of

the nonsingular 65‘-1' and ?(-i as

=35 (12)

i
TMF5 = L0 - FLM(Faiad  (13)
gMTql =70 ~7gM (T3

Therefore, using the independent coordinates we must not
consider the constraint involved in the mechanical model
with the Lagrangian multiplier because § is independent

to the kinematic constraint.

4 Example

Consider the planar four bar mechanism as shown in Fig.(2)
at initial state. For the mechanism, the inertia proper-
ties and initial conditions are set as: m; = 22, 1, = 11,
myg = 22,4, = 11, my =22, 1 = 11, mqy = 0, 74y = 0,
and ¥;(0) = 90(deg), ¥; = 2r. The data input file named
as fourbar.dat for ACUBE software is arranged as [ollows

where the command is detected after ">” symbol.

ACUBE

August 22, 1994

filename fourbar.dat

This data file test the closed planar four bar constraint library.
>total number_of_body

2

>planar fourbar

00.0. 4. -1.

1-2.0.2. 0.
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-1..0.-1.5 0.

2.3.0.0.

Ground link cuafiguration, 4-th generalized coordinates
>absolutex_position_constraint

00.0.0.0.0.

>absolute_y _position_couslraint

00.0.0.0.0.

>absolute_angular_constraint

00.0.0.

Driver configuration, i-th generalized coordinates
>selected_angular driver

0

11.57080. 0. 0. 0. 0. 0. 0. 0. 0.

10.109650. 0. 0. 0. 0. 0. 0. 0. 0.
00.0.0.0.0.0.0.0.0.0.

At time = 0, the confliguration of all generalized coordinates.
>initial gencralized coordinates

0. 0. 0. 1.5708 1.5708 2. 2. 0.

mass and inertia of links

>inertia_properties

22. 22, 22. 0.

11, 14, 1L 0.
End of data scts
>END_.OF_DATA

5 Discussion

The dynamic response of the follower link using the ACUBE
is some diflerent with the result of the commmercial dynam-
ics package ADAMS because of the selected integration
algorithm as shown in Fig.(3). The CPU time of the pre-
posed mixed coords. and closed form solution nodules
is faster than that of the reference coords. and the com-

parison of system coordinates dimension are shown in the
table.

: mixed coords. | reference coords.
CPU time(sec) 10.923 43.791
dim. of coords. 1 12
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Jigure 3: The follower response
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