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ABSTRACT

A - new approach to deal with. the model
malching problem for square plants is suggested.
Admissibility conditions of the model matching
error are derived in terms of state-space
parameters and the derived formulas are
exploited to obtain the solution to the model

matching problem in [72 norm.

I . INTRODUCTION

Since the so-called Youla's parametrization
leminal®] for stabilizing controllers, the equation
E(s) = To(s) - Tu(s)Q(s)Ts (s) has been one of
the most important equations in linear system
theory. The equation is widely used in H2 or
He optimization problems and various methods
were developed to solve these oplimization
problems(2,36). In general, 2 problem is easier
to be solved and it is also known that the He
problem with T, and T, square is relatively
easy so that an explicit formula is possible[6]. In
most cases, however, the solving procedure for
the I/2 and I[1~ problems are differently set.
The main purpose of this paper is to present a
state-space form for I(s) that is convenient to
develop [z or He solutions in a unified
framework for square Ts and T, The main
resulls are described in Theorem 2.

Throughout - the paper, only real rational
matrices are considered and the notations G~
and G are used for the inverse and transpose
of G. The malrix G.(s) stands for GT(-s). A
real constant matrix A is said to be stable if
the teal part of each eigenvalue of A is
negative. A rational matrix G(s) is said to be
stable if ((s) is analytic in Res > 0. The
linear fractional transformation(LIFT) of K(s)
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with respect to G(s) = Guls) G“(S)] is

Gal(s) Guls)
denoted by G(s)e= K(s). That is G(s)° K(s)
= Gu+ GeK(I - GuK)'Ga. The conventional

A IB
-
C |D

notation C(sI-A)'B+D= ={AB,C,D}

is used.

II. PROBLEM FORMULATION

In this section, we define the admissibilily of
the model matching error and explain the
relationship with the model matching probelm.
We first define the model matching problem in
a norm. :

Tols) E RHI™, To(s)ERHL™ and Tuls) €
RHJI™™ | find all Q(s)ERHS™ such that

the @ norm, where o could be H2, [~ or any
other norm, of the model matching error

E(s) = To(s) - Tals)Q(s)Tr(s) (1)
is less than the prescribed value B.

Definition 1 : A rational matrix [E(s) € RH<""

is said to be admissible for the triple
(Tols), Tals), Tols)) if there exists Q(s)E

RH&*™such that E(s) = To(s)-Tu(s) Q(s)Ta(s).
The inner-outer faclorization of a stable

matrix plays an important role in the MMP. We
make the following assumptions on Tu(s) and

Te(s) in relation with the inner-outer
factorizability of these malrices.

Assumption_ 1 : The ranks of T.(jv) and
Ts( i) are p and m, respectively, for 0=<w

<o,
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Under these assumptions, we can always obtain
the following inner-ouler factorization for Ta(s)

and Tp(s): that is
Tu(s) = Udl$)Val(s), Tr(s) = Ve(s) Usls) (2
with the properties that

LI{I(S) & RI'pr:(p, (./uf(s) Uu(s) = [n M
Up(s) & RIIS™ Up($YUps(s) = Im

Vals), Vil (s) € RITS )
Vi(s), V[;l (s) € RITT

Let Tal$)= { A Bia, Cia D Y and To(s)= { A,
B, Cn, D} where Aw and Agp are stable and
the realizalions are not necessarily minimal.
Then state-space formulas of the above inner
and ouler matrices are obtained as  follows [7]:
That is,

Uds) = { Aw-BuKa Bul,
Ca= Dl Dial)iy ) (5)

L= { Ea, ﬁa. Ca' I)a}

Va(s) = { Aw B D K D ) (6)

where
Du = (DL D) D
K= (DEDW) (DECu + BlaM ) (8)

and M is a symmelric solulion of the equation

(Aw - BuDid Ca) Mia+ Ml Aw = BaDia Cua) g
-MuwBu(DiDw) 'BuMi = 0

with the property that Aw - BuKw is stable.
And also

Us(s) = { An-KuwCw, Bw - KeDaw,
DiwCw, DD} (10)
:= { As, Bb, Cb, Dy}

Vils) = { Am, KoDp ' Co Do '} (D
where

Dw = (DwDE)™? -
e D)
Kw = (MupCs+ BuDw)(DwDw)

and M is a symmelric solution of the equation

(Aw-BuwDw Co)Mp+ Mlb(Alb'BlbDl_thlb)T(l?))
~MuCil D DH) ' CoMwp =0

with the property that Aw — K Cw is stable

[II. MAIN RESULT
The following lemma is the starting point to

relate  the admissibility  conditions in  the
frequency domain and the state-space domain.

The proof is trivial and hence is omitted.

Lemma 1 @ A rational matrix E(s) € RIJJ&™™
is admissible for (To, Ta, T ) if and only if

UaelE = T))Usp. is contained in RH ™.

The result of Lemima 1 shows that
E(s) € R is admissible if and only if [E(s)
= I0(s) - To(s)  eliminates all the poles of
Uasls) and Up(s). In the next section, we

investigate the pole elimination conditions of
rational matrices.

3.1 Pole Elimination of Rational
Matrices

Definition 2 @ 1) A ralional matrix G(s) is said
to be a right(left) eliminator of Gi(s) ( Ga(s) )
if the product Gi(s)G(s) ( G(s)Gas) ) does
not have a pole of Gi(s) (Ga(s))., 2) A
rational matrix G(s) is said to be a central
eliminator of Gi(s) and Gals) if the product
Gi1(s)YG(s)Ga(s) does not have a pole of Gi(s)

nor Ga(s).
The formula in the next lemma is a basic tool
to develop many useful theories in this paper

and will be used repeatedly in the following
section,

Lemma_2 @ Suppose that two constant square
matrices Ai and Az do not have a common
eigenvalue. Then we have the identily

IN(sT - A H(sI - Ag) " Hy
= ~Hi(sl - A\ 'MH, (14)
+ H\M(sI - A2)'H,
where M is the unique solution of the Sylvester
equation
AM-MAy = -H (15)

Proof : Adding -sM + Ms = 0 to the left side
of (15), we obtain (s - A)M - M(sI - A2)
= 1. Now mulliplying Hi(sI - AD™' on the
left and (s - A2)"'Hz on the right yields the
identity.

Lemma 3 : Consider the matrices Gi(s) =
= { A, B, C, D1}, Gals) = { Az Ba, Co, D2}
and G(s)= (A B C D} where A ‘does not
have a common eigenvalue with A nor Aa.
Then, 1) G(s) is a central eliminator of Gi(s)
and Go(s) if and only if

Gols)
= CsI-AD NBID-MB)Ca(sI- A)) ' By
+ Ci(sI- AN B D -MBD: (16)

+ { DUDCa+ CM)+C\M\M2 ) (s[-Az) ' By
=0
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where A, and M3 are the unique solutions of

AM,-MA=-B,C (17
and
AM2 - M2A2 = -BCa (18)

2) G(s) is a right eliminator of Gi(s) if
B\D-MB=0 (19)

When = (A1, Ci) is observable, the
statement is also true.

3) G(s) is a left eliminator of Ga(s) if

converse

DCr+ CMg=0 (20
When (A2, B2) is conlrollable. the converse
statement is also true.

Proof : 1) It is not difficult to show that
state-space paramters of G1(s)G(s)Ga(s) are
given by

G\GG2 ={ As Bﬁz]' B;Dz]

0 Az Bg 2D
[ Cr DIDCR], D1DD32}
where
A B BiD
1 IC] 8= %] (22)

and Cf— {C D\

Converting the state-space form in (21) to a
transfer matrix form, we obtain

GGG
= CAsI-ApT'BAD, + CalsI-A2)'By)  (23)
+ D\DCy(sI-Az) "By + D\DD>

Since, CAsI-Ap 'By= CisI-AN'ByD + Ci(sl-Ap) ™"
B\C(sI-A)'B + DiC(sI-A)'B, applying Lemma 2
to the second term of the above equation yields
the identity CAsI-Ap~'Bs= Ci(sI-A) NB\D
- M\B) + (D\C+ Ci\M)(sI - A)7'B.
Substituling this into (23), we obtain
Gi($)G(8)Gas) = Gols)
+ (DI C+CIMI(sI-A) " (BDy-M»B,)  (24)
+ D\DDsy
Notice that the poles of Gols) come from those
of Gi(s) or Ga(s). Since GGG is devoided of
the poles of Gi or G2, Go(s) showed vanish

and this complete the proof. 2) This is a special
case that Ga(s) = I. Hence, take B; =0 and

Dz = I. Then we obtain from (24) and (16) that

GI($)G(s) = C\(sI-A) (BID-MB)

A 25
+ (D1C+CIM)(sI-AY'B + D\D )

Hence, if B\D - MB = 0, then G is a right
eliminator of (). Suppose that (A1, C1) is
observable and G is a right eliminator of G.

Then, the first term in (25) should vanish for
G1G to be devoided of the poles of Gi(s). This
is possible only when BiD - M1B =0 because
(A;, C1) is observable.

3) The proof is dual to that of 2) and is omitted.

Rational matrices G(s) € RH""" and F(s) €
RH&" are called inner and co-inner if G.(s)
G(s)=1Im and [(s)FF.(s) =1, respeclively.
The following well-known results can be easily

derived from the results of Lemma 2 or Lemma
3.

Lemma 4 1} : 1) A pXm ralional matrix G(s)
= (A B,C D} with A stable is inner if

B™™,+D'C=0 and D'D = I, (26)

where M) is the unique symmetric solution of
AT™,+MA=-CTC @n

When (A, B) is controllable, the converse

statement is also true. The solution matrix M,

becomes observability Gramian, hence positive
definite, if (A, C) is observable,

2) A gXn rational matrix F(s)= { 4B, C
D} with A stable is co-inner if

BD" + MyCT = 0 and DD =1, (28)
where M3 is the unique symmetric solution of
AM3z + M2AT = -BBT (29

When (A, C) is observable, the converse
statement is also true. The solution matrix M3z
becomes the controllability —Gramian, hence
positive definite, if (A, B) is controllable,

3.2 Admissibility conditions of
the model matching error

In section I, state-space paramelers of
Ua(s) and Us(s) were expressed in terms of
the state-space parameters of T.(s) and Tu(s)

and they were denoted as Ud(s) = { A, B,,

CayDa) and Usls) = { A, B, Co, Dy }.
In general, these parameters are not minimal and
difficulties arise when we apply the eliminator
theories developed in the previous section. Hence,

we will denote minimal realizations of { Aa,
gu, 6a} and { gb, Eb, 6b} as {Aa, Bm

Ca} and { An Bs, Cn}, respectively. This
minimization, however, does not cause any
trouble because all derived forrnulas can be
reexpressed in terms of the old parameters.
Since U, and U, are square, they are inner
and co-inner at the same time and hence it
follows from Lemma 4 that the following
equalities hold. For Ua(s) = { Aq, Ba, Ca Da)
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BIMa.+ DIC,=0, DID.=DuDE =1 (30)
and

BoDY + N.C&=0 (31

where M, and No are the unique positive
definite to solutions of-

AXM, + MoAl = -CTC, ‘ (32)
and
AuNa * NoAd = -BuBa (33)

It is not. difficult to show that Ni' = M. (solve
(30) for Ca and substitute this into (32)) where
Moo is the controllability Gramian of (Aa, Ba)
and N, the observability Gramian of (A4, Co).
For Us(s) = { As, Bs, Cs, Db},

BoDE+ MyCL =0, DyDI = DIDy = I (34)
and
BiNy + DICs= 0 (35)

where M, and Np are the unique positive definile
solutions of

AsMy + MyAL = -BoBY (36)
and
AiNs + Npdp = ~CECs (37

It is also true that N3'= Ms. Now we are
ready to state the main theorems of the paper.

" Theroem 1 © A ralional matrix £(s) = { A., Be,

Ce De) € RH™™, where A, is stable and the
realization i1s nol necessarily minimal, is
admissible for (To, Ta, Ts) if and only if the
parameters Ae, Be, Co and D. satisfy the
following five equations

AdMu + MuA. = -CiC. (38)
MuBe+ CiDe = X (39)
AeMay + MyAf = -BeBi, (40)
CeMa + DeBl = X 41)
Ba(MuMaz + MMz) =0 (42)

where Xo and X, are pre-determined values
calculated from the given data( To, T4, Ts) as
Xai=CiDo + M12Bo (43)
Xo:=DoBi - CoMz (44)
and M and Mzn are the unique solutions of
the equalions.
AdMiz + M2Ao = ~Ca Co
AoMn + MpAf = BoBj
Proof : By Lemma 1, I(s) is admissible if and

(45)

only if F(s):=E(s)-To(s):={ A, B.CD} is a
central eliminator of Ua(s)= { ~AL, -C3, B4,
DIYand Us(s)= { ~Al, -Ch BE Di) whose
realizations are minimal. It should be noticed that
if IF(s) is a central eliminator of Us and
Ubps, it is also a right eliminator of Ug and a
left eliminator of Up. because UdqUqs =1 and
UpUs = I. Now, applying the results of Lemma

3 to FE(s) which is a central, a left and a right
eliminator, we can conclude after a little thought
that [(s)= ( AB,CD} is a central eliminator
of Us and Ups if and only if

CiD + MiB =0, DBf - CM» =0,
BIMM; =0

where M, and Ay are the solutions of the
equations

AlMy+MA= -ClC

(46)

7 pd 47)
A[\lz + 1\42Ab = —BBI)
Since £ = E - Ty, it follows that
_[A. 0 _[ Be
4 [ 0 Ao]' B [—Bo]’ (48)

C=[C. Cid, D=D¢-Do

Now, substituting the equations in (48) and the
partitioned expressions M1 = [Mnu Mpl and
Mz= [ ML ME]T into (46) and (47) yields the
desired results.

While the formulas in Theorem 1 are convenient
to check the admissibility of a given rational
matrix, the formulas given in the next theorem

are very useful to synthesize a.model matching
error that satisfies a given norm bound.

Theorem 2 : 1) A rational matrix FE(s) is

admissible for (To, Ts, Ts) if and only if FE(s)
is of the form
E(s) = ¢(s) = W(s) (49)

where

‘40 Ba[)Z‘AmeNb lNaa a BaDZ‘

0 Ab | Bs 0
O I |~ e (50)
Cu .Ybn}Nh l O [
0 DICs | 1 0
Xom = Xo = DaBIM 2M (51)

and  W(s) an arbitrary stable matrix. 2) A
rational  matrix E(s) is  admissible  for

(To, Ta, Ty) if and only if [(s) satisfies the
equality

Eah(s) ::1)11110'(5)[5(S)Ubt(s)l)h

= AJs5) + W(s) (52)

where

— 296 —



A(s) 1=DiUs(s)Xa(sl - Aa)'BaDY

(53)
+ DICy(sI -~ Ap) ' XEn
Ae 0 | BDJ
BbAYZ Ab | 1ng (54)

xI' pics | 0

and W(s) the same arbilrary stable matrix as
in (49).

Proof : IFor proof, see [5].

It should be noticed that the matrix Eu(s) is
decomposed of a fixed anti-stable matrix A.(s)
and a free stable matrix W(s). This
decomposition property is a very significant one
to develop H2 and I~ optimization theories. In
fact, the minimal [z norm of the Hy MMP is
equal to Il A(s)ll2 and the minimal He~ norm
of the Ho MMP is equal to I A(s) s The
H; and He oplimization problems are treated
in section 4.1

When an admissible E(s) is given by the

LFT form in (49), the corresponding Q(s)
should be computed from (1).

Lemma 5 : When an admissible FE(s) is given
by the form in (49), the corresponding Q(s) in
(1) is given by

-Q(s) = ¥(s) o W(s) (55)
where
Aw-BuKe Bu DuYe HuDwCs 1-BuDw BuDid
0 Ao -¥s DCis Vs D 0
Wore| 0 O AwmKeCad Ke 0 | 56
“Ka DuY. DwCs | ~Da v
0 0 DR Cw | D 0

Yo = BiMu+ DIC,,

Ys = MznCh - BoD}
and

Da» = DidDoD% (58)

Proof : For the proof, see [5].

Up to this point, all formulas are described in
terms of the minimal realization parameters
(Ag, Ba, Ca) and (As, By, Cb). In computational
aspect, however, the formulas expressed by the
parameters ( A, B, Co) and ( A, By, Cb)
in (5) and (10) are more convenient to use.

Let Mz and Mz be the unique solutions of
the equations

//’Iar Mlz + szAo = - Cq.TCO,

e ~ (59
Ao Man + ﬁzz Apr = BOBZ
and define
Sa= Ca' Do+ M 2Bo, (60)
o T
Xy =Do By -Co Mz

P = BaT My + DIC,

- 61)
P = Mz Cs» - BoDE
and
Lom = Xo - Da B.)” My Mz 62)

Let Na, Ny, Moand My, be the unique
solutions of the equations

A\u Na + Na A\ar == gu B\a‘r. ©3)
A\brﬁb"' Nhﬁb=_ C‘TC

//iar Ma + Ma 2{1 = - 6117 60,
A

>
o

o ve 64)
o My + M, Ab7="‘Bb BbT
Lemma_6 : 1) The following equalities hold:
Mi=Ma, Ms=Mun (65)
Po=Ya Pb=Ys (66)

where My, and M are defined in (8) and (13).
2) Let ®(s) denote the transfer matrix ®(s) in
(50) with Ag, Ba, Ca Na, Xa, Ab, Bb, Cb, No,
and Xsm substituted by the above corresponding
head-signed variables. Then

$(s) = #(s) (67)

3) Let 7 (s) denote the transfer matrix A(s)
in (54) Wth Aa, Bu. 4Ya, Ab, Bb. Cb. and ‘.me

substituted by the above corresponding
head-signed variables. Then

As) = Als) (63)
Proof : For the proof, see [5].

Notice that the equalilies in (66) make the
matrix ¥(s) in (56) irrelevant to the minimal
realization parameters. (Aqg, Ba, Co) and (A, Bb,
Cs).

IV. APPLICATIONS TO I, AND
1. OPTIMIZATION

In this seclion, the admissibility forinulas
developed in the previous section are applied to
the MMPs in Hz and He norm.

4.1 Model matching problem in H; norm

It is well known that the space RLz can be
decomposed as RLz=RH»® RH2" where RH3"

is the orthogonal complement of IRH2 and the

sign @ stands for the direct sum. An important
property of the above decomposition is that

when G(s) = Gils) + Gals) with Gi(s) € RII2
and Ga(s) € RII", then 1Gl22= 1 Gi+Gall 2°
=HGH 22+ 1 Gal 22= NGl 2%+ U Gae Nl 22
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which i{s often described as the DPythagorean
theorem.

For an admissible [£(s) to have finile [12
~norm, it is necessary that I(s) be strictly
proper. llence, D. will be sel zero for the MMDP
in Iy norm. Since DgUq(s) and Us{s)Dp are

inner, I LFw(s) 2= 1 5(s)2 and hence it
follows from (52) that
WIEN 22 = 1A 22+ T W(s) Il 22

(69)

A N 22+ I W(s) I a?

Noticing that the first lerm of (69) has a fixed
value and the second term is the free parameter
W(s), we can conclude tlhat the admissible
E(s) which has the minimal H3 norm, say
I (s), is given by E(s) in (49) with W(s) set
zero. That is

Aa ELJ)LYMJVh ”JwYa
E(S) - 0 Ab | Bb (70)

e {____

. Ca XomNo l 0

It should be remarked that E(s) and A(s)
have the same Hz norm but  E(s) is
admissible while A(s) is not. Note also that all
sub-optimal E(s) can be easily determined by

choosing appropriate W(s). Now we have the
following theorem.

Theorem 3 : The MMP in 2 norm- described
in section I is solved as follows; 1) The
optimal solution E(s) is given as in (70).
Therefore the minimal I/2 norm is equal to
FEGS) ba= 1A = A 2. 20 All
sub-optimal solution E(s) such that

I E(s) N 2%< I E(s) I 2% +B are given by

E(s) = 8(s) » W(s) = ®(s) « W(s) (7))

where ®(s) is given in (50) and W(s) an

arbitrary stable malrix with I W(s) Il 2% <8$. In
this case, the corresponding @(s) in (1) is
given by .

-Q(s) = ¥(s) = W(s) = §(s) » W(s) (72)

where V¥(s) is defined in (56). When W(s) =0,
the Q(s) in (72) becomes the oplimal one which
yields the optimal solution E (s).

4.2 Model matching problem in' J].. norm

In this section, we apply the resulls of
Theorem 2 to obtain a forimula that gives the
minimal norm value of the MMP in Il« norm.
Consider the matrix I(s) = { A,B,C,D } where
A is stable and the realization is not necessarily
minimal. ‘

When G(s) € RL; is decomposed as G(s) =
Gils) + Gas), Gils) € RH,, Gas) € R, ",
the H2 optimizalion problem is easily solved by

exploiging the Pythagorean theorem. The
following Nehari extension lemma plays an

analogous role in He optimization. The formulas
in the next lemma can be easily obtained from
Lemma B of [4]

Lemma 7 @ 1) Given a rational matrix F(s) =
{ABCD} €RlHe with A stable, the

Bi= min l Fuls) + W) I o s

minimal value we Rl

given by
B = IFs)ls (73)

2) All W(s)E€ Rl such that | Fa(s)+ W) I «
<B, B> B, are given by

W(s) = (Lu(s)¢(s) + Lia(s)) (74)
X (La(s) ¢ () + Laa(s) )™ :

where
= [Lu(s) Li(s)
L(s) [sz(s) Lzz(s)]

A 1z'B Z\MmcT

(75

7 = (B2 - MN) , (76)

and ¢ (s) is an arbitrary stable matrix wilth

¢ (s) e <B.

Now, let us go. back to the equation (52) in
Theorem 2. Since B Ew{s)l w= §1E(s) I} « and
Ew(s) is decomposed of A« and W(s), the
results of Lemma 8 can be directly exploited.
Notice also that ) A(s) #»= I A (s) b4 by the
definition of hankel norm.

Theorem 4 * The minimal 7~ norm of the He

MMP, say B, described in seclion I is given
by

B=tA(sYlha= N A(s)Nn - )

The significance of the formula (77) lies in the
fact thal it enables us o determine the minimal
H«~ norm of the given H- optimization problem
without complicated iteration procedures.

V. CONCLUSIONS

The admissibility concept of the model
matching error with Ts and T, square is
introduced and the sufficient and necessary
conditions for the admissibilily are derived in
state-space forms. A parametrization formula for
the admissible F(s) is ‘obtained by using these
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conditions. It is shown that the formula is very
convenient o treat Hz and Ho optimization
problems in a unified framework.
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