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ABSTRACT

In this paper, we discuss a design method of
iterative learning control systems for parabolic
linear distributed parameter systems(DPSs). First,
we discuss some aspects of boundary control of
the DPS, and then

Karhunen-Loeve procedure to reduce the infinite

propose (o employ the

dimensional problem to a low-order finite
dimensional  problem. An iterative leaming
control(ILC) for non-square transfer function

matrix is introduced finally for the reduced order
systeimn.

1. INTRODUCTION

Some processes such as heat treatment of
metallic or ceramic products can be described by -
PDE (partial differential
equation ) systems with boundary control. Since a
PDE which describe a DPS is of infinite-dimension,

batch operation of -

it is hard to manage in practical use, especially, in
the control system design. A PDE with boundary
control can be reduced to a set of ODEs (ordinary
differential
techniques [7]. Once it is reduced to a set of
ODEs, we can employ various control techniques
MIMO(multi-input

equations) . by wusing some reduction

developed for multi-oulput)

systems.

In this paper, we consider an ILC for a linear
parabolic PDE with boundary control. We will first
convert the boundary

control problem to a

distributed control problem and then show the
system can be decomposed into an infinite number
of ODLEs
practical purpose, it can be approximated by a
finite dimensional ODE system. This system can be
controlled by known control methods.

Usually the approximated system has more
outputs than inputs. We propose an ILC method
for this problem.

using eigenfunction expansions. In

2. STATEMENT OF TIE PROBLEM

In the following, £ denotes a domain in R®
with boundary I We assume a time over a finite
interval, te[ 0, 7] , TXoo. and define

Q=92x[0,T}] ,and = I'x[ 0,T]

and A as the Laplacian operator.

Consider the heat conduction equation in Fig. 1
in Q

%—‘:aAyinQ

ylr= fi, i=1,2,3
1)

LY = 0,i=4,5

Hx,ty) = (%)

in 2

where a is a constant and 8/dn denotes the
normal derivative toward the exterior of . It is

assumed that the initial condition »°(x) is fixed.
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IFig.1 Schematic diagram of three-dimensional
heat conduction system

Our aim is to realize an optimal trajectory
which minimize the cost function given by
3 (2)
= —_— 2 3
Kp= [(y=yardudt+a [ fdrat

through iterative learning operation where y; is a

desired trajectory function in L% Q) and ¢ is a

given positive constant. Then f; should be taken in

LZ(E,-) in order for (2) lo make sense.

3. Uniqueness and Ixistence
To understand the solution of boundary control

problem (1), -let’s consider a test function space
given by

0= (4] $=H(Q), ¢(x, V=0,

¢ | MU = 0’ %% I IR e 0} (3)
where .
H'={ §lg. 3¢/ dt, 04/ dx;, @

d%p/ dxdx;e LA Q)}

It is known that, if the control space is closed and
a unique y= ¥(f)e LY Q)
such that the following equality is salisfied [3].

T (08 _
qu( 57 —ab &)dxdt fagy(’qS(x, to)dx )
- 029
Z"} .Llf,- an dxdt, V¢ @

convex, there exists

fEeL4(3), Vel Q)

where

4. Conversion of a boundary control problem to
a distributed control problem

The . solution of (1) is equal to the sum of two

parts v {x, Dy x, ) in the sense of generalized
function such that y/(x, is a solution of the

system given by

ay':(lA _GYs
T A T

.VIII“,-:O,Z.:

1,2,3 (6)

v, _ .
5, b n= 0, i=45

ylx, tg) = Y(x)—ydx, ) in 2
and y{x, D satisfies BCs(boundary conditions)

55, 0= 2 yul050) o

where ¥4y 1S a solution of in the following

equations
Ay; = 0 in Q

yil r, = fi8;, 7=1,2,3 ‘ @)
0y .
el = 0,i=4,5

Wox, ) = yix, ) +y(x, ) 9

By substituting (9) in the original problem (1), we
obtain the following equations for y/x, £):

3 3 .

BL4 aby,— 23 yu(x) D)

at i=1

yvlr =0, i=12,3

(10)
2 .
L, =0, i=45
ylx, ty) = Y(x) in 2

We now have a new problem with zero BCs. This
PDE can be solved by eigenfunction expansions.

5. Eigenfunction Expansions

Let ¢,x)'s be the eigenfunctions of aa:

and;=gp; n L

¢'j‘ I; = 0 , 121,2,3 (11)
a¢; . .

an’. | r= 0, i=4,5

(¢j. d0) =03
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where (,) is the inner product defined by

(b1, 9)= [ dx 12
The solution of (11) can be written by

ylx )= 5 sLDaks (3

where a(8)= (7, ¢,

and the solution of (8) can be written by

V= ,}; $1x) By (14)

(v4,97).
By substituting (13) and (14) into (9), we obtain an
infinite- dimensional ODE system given by

where B;=

d
et Zlﬂ,,,-f,-(t) L k=1,2,... (15)
ylx, H= Ex dunalD , (16)
Therefore, the original system (1) can be
wrilten in a vector form as following :
x=Ax+Bu
an
y=Cx+Du
where
x=[ ara...] T, u=[ f, f,£,1 7, y=9(x, 1),
AL 0 ... —by —by —bp
0 /12 ven _b21 _'bzz _b23
A: . . . ’ -B= ’
C=[ ¢ ¢2¢5...1, D=[ Ya Ve Vs ] (18)

Control of an infinite dimensional system is not
feasible. Indeed, higher eigen modes have minimal
participation in the response. Hence, we can
approximate the system by taking a finite number
of dominant where the number is
sufficiently large such that the accuracy is not
affected. In this way, the infinite - dimensional
problem can be reduced to a finite - dimensional
problem.

modes

6. Karhunen-Loeve Approximation

In the eigenfunction expansions, we generally have
to take a large number of modes to get a sufficierit

accuracy, which still have the problem with a
high dimensionality.

This trouble can be overcome by the
Karhunen-Loeve (K-L) procedure which is a
rational procedure  to = determine.  empirical
eigenfunctions ' from an .ensemble of system
responses. Details of the K-L procedure can be
referred to [8]. We will describe the performance of
the K-L procedure by numerical simulations.

Consider the evolution equation

ay
at =L(y) ‘ | (19)

It is
assumed the variable ¥(x, #) taken on homogeneous

where L is a linear differential operator.

boundary conditions. Consider the two points
spatial correlation K formed as follows:
K(x,x')= hm f Wz, ) y(x", Ddt 20)

where the overbar indicate complex conjugation. K
and L have the same eigenfunctions. The
calculated by the K-L procedure
represent the average energy of corresponding

eigenvalues

eigenfunction in the system. We might take the
eigenfunctions which capture most of the energy.
To apply the K-1. procedure, we need to take
an ensemble from (1). For simplicity, we consider
about two dimensional bounded by
r=[ O,R] ,z=[0,1] and we set =08 in

(1). We simulated the problem by using the' finite

domain

difference method and took an ensemble consisting
of 40 realizations separated 0.1 time units. In fig. 2,
dominant K-L eigenfunctions and
eigenvalues which have 99.8%

the six
of energy were
shown., When we gave changes on the boundary,
the responses of two systems constructed by the
empirical eigenfunctions and by the finite difference
method were shown in figure 3 where (i,j) denotes
the grid point at (z,r).

7. IL.C for non-square transfer function matrix

The final approximated system using above
procedures can be written by

W8) = {C(sI—A) "'Bs+ D}u(s) = G(s)u(s) 1
in the transformed domain where ¥Ws)eR" and
u(s)eR™, nd> m.

The transfer function matrix generally appears as
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I'ig. 2. Six dominant K-L eigenfunctions and eigenvalues.
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Fig. 3. Responses of two systems constructed
by the K-L eigenfunctions and by FDM.

non-square. The necessary input update law to
minimize the cost function (2) is written by

Up+1 = uk+H1e,,—£u,, (22)

where € is 'a positive constant corresponding to
the control weighting and the subscript k denotes
the k-th performance cyclel6] . The smaller ¢
means the lower control weighing. Substituting (21)
into (28), we get the following sufficient condition
for convergence.

”(I_E)I—Hl(;”,'(1 (23)

A design method of decentralized MIMO ILC
was proposed for a square transfer function matrix
in [11. In that paper, the diagonal dominance of the
transfer matrix plays an important role for  the
design of the learmning transfer matrix. In the
non-square case, we can not take the inverse of
diagonal terms for learning transfer matrix.

The m linear combinations of the 7 outputs may
be used for leaning control.- Then the input
update law can be written by
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llk+1=(1-€)2tk+HlL€1, (24)

where LeR™ and the compensated matrix LG
satisfies diagonal dominance as required. Now we

suggest to use the following leaming controller
H,=(LG) ;! (25)

where (LG), denotes the diagonal part of LG.

In the case of &=0, if the input update law
satisfies the convergence condition, it minimizes the
cost function

Ku) = f:e(“) TL"Le(u) dt (26)

= f; t,e( w) TP e(u) dt

where P is a positive semi-definite matrix. When
the learning control wilh the control weighting is
applied to the system, € can be used to adjust the

convergence rate.

8. Conclusions

In this paper, an iterative leaming control for
linear parabolic DPSs with boundary control was
discussed. We converted the PDE to an infinite
ODEs
emploved K-L procedure to get dominant empirical
eigenfunctions and showed its efficiency by
numerical simulation. We could get a lower order
ODEs which described the original  system
sufficiently. Finally an ilerative learning control for
non-square transfer function matrix was discussed.

by using eigenfunction expansions. We

References

1. Cho, J. W, W. C. Kim and K. S., Lee, Proc. 1st
ASCC, Tokyo, Japan, Vol. 3, 239, 1994.

2. Lee, K. S, S. H., Bang and K. S. Chang, J.
Process Control, in press, 1994,

3. Lions, J. L. Optimal Control of Systems
Governed by Partial Differential Equations, S.V,,
N.Y., 1971

4, Moore, K.,
Deterministic Systems,

Leaming Control for
S.V.,, Tokyo, 1993.

Iterative

5. Rosenbrock, H. . Computer-Aided Control
System Design, A.P.,, N.Y., 1974.

6. Sogo, T., N, Adachi, Proc. 1st ASCC, Tokyo,
Japan, Vol.3, 227, 1994.

7. Stakgold, 1, Boundary Value Problems of
Mathematical Physics, M. Co., N.Y., 1971

8. Sirovich, L., Q. Appl. Math. XLV, (3), 561, 1987.

- 323 -



