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Abstract

In this paper, a new design method of variable struc-
ture model following control system(VSMFECS) for robot
manipulators 1s proposed. The proposed controller over-
comed reaching phase problem by using function augment-
ing scheme to the sliding surface. Therefore, it can be
guaranteed that the overall system always has a robust
- properly against parameler variations and external dis-
turbances. Furthermore, the proposed controller does not
use the model state, z,,, different from olher previous
works. Regardless of not using the model state, the model
Jollowing error dynamics, wirlual dynamics, 1s shown to
be globally ezponentially stable.

The efficiency of the proposed method has been demon-

strated by an example.

1 Introduction

The model reference adaptive control(MRAC) is one of
the main approaches to adaptive control. The desired
performance is expressed in terms of a reference model,
A, B, and model state z,,, which gives the desired re-
sponse to a command signal r. Actually, however, there
is no need to allocate memorics to model state z,,, be-
cause the desired performance can be defined by the pair
(Am, By). TFurthernmore, for the MRAC scheme, gener-
ally one can not say about the decreasing speed of madel

following error. And for the conventional variable struc-

ture model following control system(VSMFCS), system
output is sensitive during the overall system is not in
the sliding mode, that is, when the system is in reaching
phase — it is called recaching phase problem.

To overcome these shortcomings, we propose the new
VSMFCS. The proposed controller guarantees the occur-
rence of sliding mode all the time by using function aug-
menting scheme to the sliding surface, so we can obtain
the robust properties all the time against external distur-
bances and parameter uncertaintics. Furthermore, since
the proposed controller does not use the model state z,,,
one can save the memory storage. In addition, model fol-
lowing error dynamics is shown to he globally exponen-
tially stable, i.e., one can assign the maximum allowable
error decreasing speed, where the model following error
is defined by the difference between the system output
and the ‘virtual’ — because we do not use the model state
- model output. Though the model following error goes
to zero as fast as possible, there is no need to increase

the control gain in signum function as in previous works,

so excessive chattering is not caused by applying the pro-

posed technique.

2 Modeling of Robotic Manipu-

lator

The dynarmic equation of motion for an n degree-of-freedom

robot manipulator can be derived using Lagrangian for-
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mulation as
M(q)i+Clq,d)d +G(q) = u+d, (1)

where M (q) is an n X n mass matrix of the manipulator,
C(g,q) is an nx 1 vector of centrifugal and Coriolis terms,
G(g) is an nx1 vector of gravity terms, u is an n.x 1 vector
of control inputs, and d is an n X 1 vector of bounded
disturbances.

Assume that M = M + AM, C = C + AB, and
G = G + AG, where “~” denotes the mean value and
“A” denotes the estimation error. We also assume that
the AM;;, AC;; and AG; are bounded by A" C{;-‘ and

LF IR

G™ as |AM;] < M7, |AC;| < CF, |AG;] < GT, where

1 |j’ i T

“m” denotes the maximal absolute estimation error of

each element, and |d;| < d™.

3 Design of the Control System

The reference model is usually described by

d | Im 0 I Im 0
— — + r
dt qm Aml Amz qm Bml
= AmIm + ery (2)

where z,,, = (¢7 ¢7)T € R, A,, € R js 4 constant
stable matrix, B,, € R " is a constant malrix, and
r € R" is an external input vector.

Let’s define a new error vector e as a following form,

instead of conventional definition e = z — z,,:

t
€= —/ (Apz -+ Bpr)dt, (3)
0

where 7 = (q7 47)7 € M. Tet’s define a new sliding

surface as a funcltion augmented form:
s = Ke — h(t), (4)

where K = (Ky 1 1,) € ® [ is an n x n iden-

tity matrix, Ky = diag(ky, ks.-+-, k), ki > 0 for ali
t=1,2,--+,n, and each element of the auginenting func-

tion vector L(t) € R holds the lollowing assumption.

Assumption 1 A, : By —» R, b, € C'(0, 00}, h €

L™, the support of h; is the bounded interval [0, 7] ¢

Ry for some T > 0, and hi(0) = §(0) + kiq(0), where
C'[O,oo) represents the sel of all first differentiable con-

y T

tinuous functions defined on [0,00) and 1 = 1, 2

n.

Consider a Lyapunov function candidateas V = %sTIWs.
Differentiating V' with respect to time and adopting the

skew-symmetricity of /\'I(q) —2C(q, ¢), we have

1

Il

TCs +sTMs = o [(:s + M (Ké - jz)]

i

sT [Cs + M (§+ Kij~ KApz — KB,r ~ )]

sT[Cstu+d-—Ci-G

+M (1§ = KAz — K Bpyr — k)] (5)
Therefore, the equivalent control input can be gol as
Uy = —C(s—§)+C
~M (K1G = K Aps — KBor — h) . (6)
Now, we introduce the control input u such as
u =,y — N osgn(s), (7)

won

where “¢” means the element-by-element multiplication

of two vectors, and

N = M™|Kig— KApz — KBpr —h |

+C™ s — | +G™ 4 d™ 4 n,

n = [nleZy"'ann]Ty ni >0,
sgn(s) = [sgn(s1), sgn(sz), -+, sgn(s.) |7,
1 il s;,>0
sgn(s;) = 0 il &=0, i=1,2-n

-1 il s; <0

and the absolute of a vector denotes the vector whose

clements have their absolute values, i.e., |z = [|2], |4,
e |In| ]T.
Lemma 1 For the robot manipulator (1), the control

law (7) guarantees the occurrence of the sliding mode all

the time.

Proof By Inserting (7) in (5}, we can easily derive the

following inequality:

— 325 —



J!

Vo< =S

mi]sil . (8)

Therefore, V is really a Lyapunov function. From (8), it
can be known that vV < 0, and V = 0ifand only il s = 0.
Furthermore, it is easy to know from (1) that s(0) = 0.
Therefore, V(t) = 0 ¥V ¢ > 0. This also implies that
s=0 Vt>0. Thus, the system is forced to stay in the
sliding mode all the time.

Though we did not use the model state vector, z,,,

we can state about the stability of the model following

error dynamics as in the following theorem.

Theorem 1 For the robot manipulator (1) with the
control law (7), the model following error dynamics is

globally ezponentially stable.

Proof  Since Lhe system is in the sliding mode all the

titne, we obtain the following equation:
§=Ké—h=q— Ami— Amq~ Byr — h = 0. (9)

Since i = 0 YV t > T by Assumplion 1, (9) can be

rewritten as following for t > 7"
G~ Az = Amiq — Byur = 0. (10)

On the other hand, the mode! dynamics can be derived

from (2) as following:

i]‘m - Am'l(}m - Amlqm - Bmlr = 0. (] l)

Subtracting (11) from (10), we get, with model following

error € = q — qp,

. d € €
€ — Amlf - Aml( = 07 1.c., n = Am
£ ¢

(12)

Since A4,, was assumed to be a stable matrix and T is a [i-
nite value, the model following error dynamics is globally

exponentially stable.

]

4 Simulation Results

A 2-link robotic manipulator model used hy' \"0‘\1ng 14]
was used for the simulation as shown in Figure 1. Pa-
rameter valites are also the same as those of {1]. In order
to avoid the chattering phenomenon, the function sgn(s)
in the controller (7) has heen replaced by saturation func-
tion sat(s).

Ifigure 2 shows that systemn output successfully tracks
the desired model output regardless of not, usiﬁg model
stata T,,, and model following error decreases exponen-
tially to zero. And Figure 3 shows that the sliding func-
tion s, and s, were confined to the predetermined bound-
ary § = 0.05, and the fact means that the system state is
always in the sliding mode.

In the Leung's simulation results, Figure 12 and 13
have shown that the sliding function started from zero
(s1 =0, 5, = 0) was initially away from 2ero. In ad-

dition, the sliding function s, has gone away from the

predetermined boundary layer 8, = 0.05 as shown in Fig-
ure 12 of Leung's paper [3]. However, for the proposed
controller designed by the concept that the overall system
ensures the stability of the intersection of the sliding sur-
faces without necessarily stabilizing cach individual one,
all sliding functlion s; is always conlined to stay on the
hyperplane, s, = s, = 0. Thereflore, error transient can
be predetermined in advance for all time interval under

consideration.

5 Conclusions

In this paper, a new design method of VSMFCS is pro-
posed in order to remove the reaching phase problem
and to control the system williout using modeél state
Zm. The proposed control system always has a robust
property against paramcter variations and external dis-
turbances, and the model following crror dynamics was

shown to be globally exponentially stable. So, we can
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assign the model following error decreasing rate, though
MTAC method can generally guarantee only the asymp-
totic stability. Chattering during the transient phase can
be reduced by using the boundary layer technique. Sim-

ulatien results have shown the good performance of the

overall system.
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Figure 3. Sliding Funclion Values
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