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Abstract

This study is concerned with I control theory of
nonlinear systems. Recently H. control theory has
been developed to nonlinear systems, and especially
noulinear H,, control theory based on the Hamilton-
Jacobi inequality Las been proposed.  This corre-
sponds to linear H.. contro] theory based on the Ric-
cati cquation. In this paper, we apply it to a semi-
active dynamic vibration absorber for multi-degree-
of-frecdom stricture, and we design its state feadback
controller via the Riccati equation. In the simulation,
we show that it is effective for a vibration control.

1 Introduction

As the building techuology is improved, high build-
ings are ili(:rea.’sil'l'g'ill recent years. So importance of
the vibration control of buildings is rising because it
is necessary to improve living amenity and safety (i.c.
earthquake-proof building) . Thercfore, there are a
lot of studies of the vibration control of the multi-
degree-of-freedom structure using the DVA (dynamic
vibration absorber). Since the vibration control is
deeply concerned with natural frequency of the plant,
H. control theory. which is a design method of fre-
quency domain, is effective in designing the controller
of vibration control systems.

Usually the active DVA, of which control input is
the force of actuator, is used for vibration control of
building. while the semi-active DVA, of which control
input is the cocflicient of damping or spring, is treated
in this study. The semi-active DVA is more ellicient in
terws of energy than the active DVA. However jn the
state equation of the plant, there is a product of the
state and the control input. So the system becomes
nonlinear, and there is no design method of it.

In this study, we apply nonlinear H., coutrol
theory!!l, which is based on the Hamilton-Jacobi in-
equality, to the semi-active DVA for four-degree-of-
freedom structure. First, we tune up the system in
passive control enough. Sccondly, we vary the coclli-
cient. of damping by state feedback of nonlinear I
control, and improve the performance of the system

wuch mwore. We design its state feedback controller
from the Riccati equation.

Finally, we show elliciency of nonlinear H control
by simulation for the designed control system.

2 Modeling

We consider the model of the four-degree-of-freedom
structure [Fig.1]. When the disturbance § accelerates
the carth, the DVA | which arc installed above the
top floor, controls the vibration of the building.

Fig. 1: Model of multi-degree-of-freedom structure

Thie parameter of the structure is shown in Table 1.
While ¢, and k, of the DVA is constant, Acis variable;
Acis the control input.
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Table 1: Specification of model

Main Structure DVA
Mass my = 1.62 kg,my = 1.48 kg | m, =
mg3 = 1.48 kg,my = 2.20 kg } 0.135 kg
Damping | ¢; = 0.08 N s/m. ca =037
Constant (#=1,2,3,4) N s/m
Spring ki =2,600 N/m ke =220
Constant (1=1,2,3,4) N/m

Natural Frequency (Main Structure)

wy = 13.2 rad/sec,
w3 = 61.1 rad/scc,

wy = 38.7 rad/sec
wy = 77.6 rad/sec

2.1 Equation of motion

The equation of motion, which is concerned with the

building of Fig.1, is shown as {ollows.

Myhy+ Cohy+ Kohy+ Crahta+ Kizhg = Eyg+ Lyhg u
(1

M, = diagling,my,ms,myl
( c1+c3 —Ca 0 0
C . ~—C2 [5/] + C3 —C3 0
tT 0 ~C3 c3tcy —cy
L. 0 0 —C4 C4q
[ k] + I“'Z —Ii'.z 0 O
K —_ —kz k2 + k3 —I\‘,g 0
8 - 0 —k3 I\'g + 164 —’\'.4
L 0 0 bt 7} 1\24
T
E, = [ —my -z -—M3 —My ]
L, = [0 00 1]
Co = [0 00 —c]”
Ko = [0 00 —k )"
T
h., = [ h‘l h'Z h,g ’7,4 ]
u = Ac

In addition, the equation of motion, which is con-
cerned with the DVA, is shown as follows.

Mahg + Calag + koha = —maf—maohy — h,u
We clitninate hyq, then we have

}.l-u + C;ziln + I()z’lv,, + —C—4~"I,3 - C—q"l.;
(N

my
k k .
+-2hy - by = Laha u, (2)
g my
where
‘ 1 1
Can = (—+ —)ca
my M,
. 1 1
Ky = (— + —)ka
Mmy Mg,
1 1
Ly, = —-(—+—
mg Mg

We combine the cquation (1) with (2), then

M[ b ]+c[ hs ]+I( [ ;"

fa Jta a

] = Eij+Lhq u, (3)

where

— M’ o I "-! — L.q
Y R b
c;:[c-‘ C”]‘cﬂ:[o 0 & o)

C’l sz my Ty

_ ](3 ](-12 o 3
K= [ o K ],1(2,_ [000 & k]

We now usc the modal analysis; we change coordi-
nates as follows.

’L, _ (I’.v 0 £.~
[vh,ﬂ ] == [ o 1 ] [ hy J

d, is the normalized modal matrix such that

1
3

o, "M, b, =1.
The cquation (3) can now be written as
E4 A+ Q% = ef+lha u, (4)

wliere

A=8TC®, P =3"K® c=0TE, |=0TL.

2.2 State Equation

We define the state z; and the output y such that

&

!
TI=[§}= h" y = ’:
€ 0 R I
ha

Then we have, from the equation (4},

Af:nf + Bf(z/)n-f- D,fj
Cyuxy, (5)

af
v

it

where

(0] I 0 0
Af:[—m —A]’B’(‘”):[u}.a]’Df:[e]'

In addition, we construct the reduced order model,
which is concerned with the first and second mode
and then

Arz, + By(xe)n + Dog
C,xy. (6)

& =
’y =
In the equation (6),B,(x,) includes the state z,; The
systems of (6) are nonlinear. In addition, if z, = o,

then B,.(z,) = o, and the control input u has no effect
on the systems (G).
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3  Construction of Control sys-
tem by nonlinear H, control

3.1 Generalized plant

Using the nonlinear H . state feedback, we construct
the control system; that is shown in Fig.2. Then w =
7. and W is the weighting function on the output y.

Fig. 2: Block diagram of generalized plant

3.2 Weighting function and controlled
output

The weighting function W, whose input is y, is shown
as follows.

5 = W’(s)y
. Aw | Dw ]
W(s) = diag[W,, W,, W] = [-2%_
(5) = diagli., ., ,] = |- 5
We choose W, and W, as
Js120 360
T 544007 YT 54400

so that we can control the vibration at the lower fre-
quency than the sccond mode. In addition, z; is equal
to the control input u.

3.3 State equation of G(s)

In this subsection, we get the state equation of G(s)
in Fig.2. We define the state & such that

Then we have

z = Az + Biw + By(x)u
z = C1TC + D}zu (7)
y = Cz.’f?,

where

- [4]. 5o- [

0 0 L
Clz[DWCr CW], G,=[cC 0].

3.4 Nonlinear . Control

We consider following nonlincar systems:

i = f() + m(x)hw+ ga(x)u (8)
z = hy(w)+ jiz(z)u
where @ € R is the state, w € R? is Lhie disturbance,

w € R is control input, and z € R7 is the controlled
output. For simplicity, we assime that following con-
dition holds.

"»1Tj12 =0, j1sz12 =]

Nonlinear H., control problem  For the sys-
tem by (8), find the state feedback controller v =
E(x) which satisfies the following; The closed loop
system S,.,, which is given by (8) and u = k(z) , is
internally stable.In addition,

SZU
ISeulliae = snp ASmelle o lelle
wela/foy Nl weLa/{o )||"’||z

Solvability of Nonlinear H,, Control Problem
The nonlinear H, control problem is solvable, if and
only if there exsist two positive definite function,
() and p(z); these satisly following two conditions

.

O 1 0(/) 7c¢

0;rTf+ 132 DT TN A On + 7'1 hy+p
1 9¢ ¢
—ZT(M]ZTT <0 9)
. ¢
1 T2
jhim gy 5% /p < o0 (10)

When there exist ¢(z) and p(x), one of nonlincar
state feedback controllers can be giveu by

1 .0
k(x) = E ;01) (11)

3.5 State feedback controller for G(s)
Comparing (7) with (8), we get f(x) = Awr,gi(z) =

DBy, g2(x) = Bz(z),hi(z) = Ciz and jiz(x) = Dia.
Then for all z,

«TCTDy; =0
D1T2D12 = 1.

It

"-lez
Jizdiz
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The equation (9), one of conditions for solvability of
the nonlinear Ho. problem, can be written as follows.

0 1 0 9
O%AT“"EE% \BT8_2+$TCTCIm+p
1 J¢ aé '

We now chioose the positive definite function ¢(x) and
p(z) such that

TPz

exTz,

¢ =
p =

where I? is a positive definite symmetric matrix, and
e is an sufliciently small positive number. Then we
have

a¢ a¢ T T pT
L =Pz +PTz, L =2TP42TPT.
d ' 9zT

T

The inequality {12) can be written as

1 .
T (PA+ATP + 7PB1 BTP +CTCy +el)z
—-zT PBy(2)BY (z) Pz < 0. (13)

If we choose the positive definite symmetric matrix P
as the solution of the Riccati cquation such that

1
PA+ATP 4+ ;y—z—I’B,B,TP+ CTCy +el =0, (14)

then the left side member of the inequality (13) is
~zT P By(z)BY (z)Px.

This is zero or negative for all z. As a result, the
condition (9) has been satisfied. In addition, the con-
dition (10) is obviously satisfied by ¢ and p .So the
condition for solvability of nonlinear H control prob-
lem has been satisfied. Then [rom the equation (11),
the state feedback controller is

u = k(z) = =BT (z) Pz

Remark If z = o, then By(z) = o and v = ¢
the state feedback controller has no cffect, when the
state is nearly equal to zero, but it has an effect when
the amplitude of the vibration is large (z > 0 ).

Remark Finding the positive definite symmetric
matrix P, which satisfies the Riccati equation (14),
is equivalent to the following; we consider the lincar
systems:

z =

Az + Byw

z = Cz

We find the neccssary and suflicient condition for
solvability of the linear H., problemn as follows.

e Aisstable

o J|Ci(sT - A)_]Blu,,o <y

In addition, this means the following; when v = ¢, =
0 (passive control), the generalized plant (7) is sta-
bilized, and the co-norm of the transfunction, from
the disturbance w to the controlled output z, is less
than 1.

3.6 Design method of control system

We design the control system by the following
method.

¢  We choose ¢q and kg, so that in v = Ac =0
(passive control), the control system can be sta-
bilized and the DVA can control the first mode
of vibration.

o DBy solving the Ricatti cquation, we get the state
feedback controller. Then the input w = Ac can
be defined, and the perforinance is tinproved
much more.

4 Simulation

Now we get the fecdback controller for the reduced
order plant, and then we exccute the simulation with
the controller and the full order plant.

We choose 7= 1.0, € = 1.0 x 10~* in the Riccati
cquation (14). In the simulation, we limit the input
© = Ac so that ¢ + Ac may not be negative.

4.1 Result and consideration

We show results of simulation from Fig.3 to Fig.6.

First, when the small sine wave disturbance of first
mode frequency inputs, the response of 2y ( the dis-
placement of first floor of building ) is shown in Fig.3.
There is no difference between the passive control
(v = 0) and the nonlincar state feedback control.

Secondly, when the large sine wave (the 100 timces
the former) disturbance inputs, the response of hy is
shown in Fig.4. The responsc in the state feedback
control is less amplitude of vibration than that in pas-
sive control. The amplitude of the disturbance make
a difference, because By(xy) is nearly equal to zero
in the small vibration (ha = 0), and then u is not
effective.

Finally, when the small and large sine disturbance
of sccond mode frequency inputs, the respouse of hy is
shown in Fig.5 and Fig.6. In the case of small distur-
bance, the state feedback controller has no cffect, but
in the casc of large disturbance, the state feedback
controller has considerable cffect.

In the case of large disturbance, the state feedback
controller is more cffective in the casc of the second
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Fig. 3: Time responscs of by 1 § = 1.0sin 13.0¢ x 1074
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Fig. 4: Time responses of hy : § = 1.0sin 13.0t x 1072

mode than of the first mode. This means the follow-
ings; We tuned up k, and ¢, to control the first mode
oscillation, and so in the first mode the feedback con-
troller doesn’t improve the performance very nch,
but in the second mode, the feedback controller is ef-
fective.

5 Conclusion

We sum up the results of application of nonlincar If o
control as follows.

o We determine the nonlincar Ho, stale fecdback
controller by solving the Riccati equation.

¢ Wilile the nonlinear H state feedback controller
is not effective against small disturbance very
much, it is effective against large one.

e The nonlinear H, state feedback controller im-
proves the performance in the second mode vi-
bration.

-5

x10
{m]

7
1.34
0.00
-1.33

feedback control
»»»»» no feedback

2.67 ’

0.00 2.00 4.00 6.00 8.00 s}

Fig. 5: Tine responscs of hy @ § = 1.0sin 39.0t x 1072
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Fig. 6: Time responses of hy
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