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Abstract

Algebraic matrix Riceali cquations of the form. FP + PFT — PRP + Q = 0. are
analyzoed with relerence Lo the stability of closed-loop systemy F — PR, Herve I, R and
Q ave n X noreal nabrices with 2 = BT and Q = Q7 > 0 (nounegative-delinite). Such
equations have heen playing key roles in optimal control and filkering problems with
R > 0. and also in the solutions of in H . coutrol problems with I taking the forn
R = HITHI - 1127"[/3. I hoth cases. an existence of stabilizing solntion, i.e. the solution
yiclding asymptotically stable closed-loop system, is an important probleny.

First. we hriclly review the typical resulis when R is of definite form, nunely either
R > 0 as in LQG problems or £ < 0. They constitinte two extrenie cases of Riceati
cquations arising in /.. coutrol theory in the sense that they correspond respectively
to the cases Flp = O and I/} = 0. Necessary and suflicient eonditions are shown for the
existence of nonnegative-definite or positive-delinite stabilizing solution.

Sccondly. we [ocns o attention on more general case where 7 is only assimed to be
symetric, which obviously includes the case for I control problems. Here, necessary
conditious are established for the existence of nonmegative-definite or positive-definite
stabilizing solutions, The results are established by enmiploying consistently the so-called

algebraic method based on an cigenvalne problem of a Hamiltonian matrix.

1. Introduction and Preliminaries

We consider adgebraic matrix Riceati equations of the

following fovin.
FP+PFT~PRP+Q =0 (1)

where F, R and Q e nox onoveal mabrices and it is
assutned that R = RT and @ = QT > 0. The closed-

loop system associated with eq.(1) is given as
I=r-»nrn (2)

Notice that. in the typical H o -control problems, the
matrix R takes the form ol R = HlT I, -—‘Ilg‘]]g. Here we
consider existence conditions ol real nonuegative-definite
or positive-definite stabilizing solutions ol eq.{1), i.e.. the
real solution 7> 0 or P > snel that Fyoin eq.(2) is an
asymptotically stable matrix.

As in the case of matrix Riceati equations for opli-

mal regulator and Kalinan filter, eq.(1) can be analyzed

by the so-called algebraic method. Let A be the 2n % 2n,

Hauniltonian matrix delined by

FooQ
A= [n —FT}' (3)

Solving the cigenvalue problem for AL arbitrary n eigen-

value cigenvector relation can he wrilten as

)/ )/
A [\} = [\] A {4)

where Y and X awe nxn miabrices consisting of upper and
lower halves of cipenvectors. andd A = diag{Ay, . A}
is the matrix consisting of n cigenvalues of 4. Then a

solution of eq.(1) can he obtajned as
P=yXTh i |X]#£0 (5)

In this case. the closed-loop systeny imabrix in eq.{2) is
cxpressed as

o= - XNTTAXT (G)
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It should be noted that the ordering ol n cigenvalues
and eigenvectors in eq.(4) is inumaterial on computing
the solution P by cq.(5). Also the following asscrtion

holds in cq.(4):
X'Y=Y'X if
XTy =vYTXx it

N+ A0,
/\i_ + /\J # 0,

1<ij<n
(7

1<i,jsn

For the development of theory, we introduce the sim-

ilarity transformation for F and FT,
W =wg (8)
rTz =2y (9)
Here Woand Z can be chosen as
W2zZT = WTZ =7 (n x uidentity matrix)  (10)

The concepts of controllability, stabilizability, ob-
scrvability and detectability play important roles in char-
acterizing solutions of matrix Riccati cquations, and are
preseuted below for convenience. Consider linear time-

invariant control systems.
#(t) = Fu(t) + Gu(t), x(tg) = 7o
y(t) = Ha(t)

with x, u and y being system state, input and output

vectors, respectively. Then.

Definition 1. An cigenvidue N of I is said to he (F. G)-
uncontrollable ((H. F'}-unobservable) if there exists an
n-vector w # 0 such that FTw = M and GTw = 0
(Fw = Aw and IIm = 0). Otherwise A is said to be
(F. G)-controllable ((11. F)-obscrvable.

Definition 2. A pair (F.GY is said to be controllahle
((H, F) is said to be observable) il all the eigenvalunes A
of F ave (F.G)-controllable ((IT. F)-observable).

Definition 3. A pair (F.G) is said to be stabilizable
({H, F) is said to be detectable) if all the cigenvalnes
A of F owith R[N} > 0 are (F.G)-controllable ((H. F)-

obscrvable.

Finadly, since @ > 0. we set Q = GGT in the subse-

quent sections.

2. The Case R >0 and R <0

2.1. The Case I >0

The case 7 > 0 corresponds to algehraic matrix Ric-
cati equalions in Kalman Giters or optimal regulators.
add has been studied in detail. Clearly, fiom eqs.(4)-
(6), the stabilizing solution yielding asymiptotically sta-
ble closed-loop systenn in e (2) is obtained as P = Y X 1

with R[AAA)] > 0.7 = 1.2 0. Letking R=H"TH.

its existence is established (Kneera 1972) as

Lemma 1. There exists & stabilizing solution I > 0 if
and only if A has no cigenvalue on the inaginary axis

and the pair (H. F) is detectable.

For positive-definite stabilizing solution. we lave

(Kano 1987)

Lemma 2. There exists a stabilizing solution P > 0 if
and only if the pair (= F. G} is stabilizable and (H, F) is

detectable.

It is known that the following conditions (C1) and

(C2) arc cepivalent.

(C1) A has uo cigenvalue on the tnaginary axis.

(C2) All the cigenvadnes of F' on the imaginary axis. if
they exist., ave (/. G)-controllable and (H. F) -observ-
able. .
Thns, the condition (Cl) appearing in these lem-

mas can be replaced by (C2). which in view of (H. F)-

detectability further replaced hy

(C3) All the cigenvalies of F'on the imaginary axis. if
they exist. are (F. G)-controllable.

Therfore Lemmia 1 can be rewritten as

Corollary 1. There exists astabilizing solution P 2> 0 if
and only if the pair (H. F) is detectable and all the cigen-

values of F ou the imaginary axis are (F, G)-controllable.

Scveral remiawks ave in order. In contrast to the
stabilizing solution. we may consisder the so-called anti-
stabilizing solution for which all the eigenvalnes of the
closed-loop system have positive read parts. An existencee
condition of such a solution is known. Morcover, if stabi-
lizing and anti-stabilizing solutions. denoted respectively
as P, and P,. exist. then it holds that P, < I’ < P, for
any real synnuetrie solution 2. These solutions consti-
tute lattice with P and P, the wmaxinnim and mininnun

clements respectively.

2.2. The Case It <0
Similarly as in Sec.2.1. we have the following exis-
tence condition for stabilizing solution (Kano and Nishi-

mura 1993) by letling R = ~HTH.

Lenmna 3. There exists a stabilizing solution I if and
only if A has no cigenvalue on the imaginary axis and
the pair (H. F) is detectable.

It 1s noted that the above condition is the saune as

in Lennmia 1 except that the stabilizing solution is not
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necessarily nonnegative-definite in this case. An obvions
example is a sealar equation p? 4 3p + 2 = (.

Existence conditions for nonnegative-definite  ad
positive-delinite P e then be derived as (Nishimura
1990)

Lemma 4. There exists a stabilizing solution I > 0 if
aud only il A has no cigenvalue on the imaginary axis

and Fis asymptotically stable.

Lemma 5. There exists a stabilizing solution P > 0 if

aud only il & has no cigenvalne on the imaginary axis.

F is asymptotically stable. and (F.G) is coutrollable.

If I s asymplotically stable, then the condition
(C1) in See.2.1 is couivalent to

(C4) ||H(sI ~ F)71G|

~ < L

Heve | - ||~ denotes the H ¢ norm. Then the corre-
sponding stateimments in Lennoas 4 and 5 can be equiva-

lently veplaced by (C:4) {(but not in Lennua 3), and henee

Corollary 2. There exists a stabilizing solution P > 0
if and only if I is asymplotically stable and WH(s] —
F)y G|l < 1.

Corollary 3. There exists a stabilizing solution 7 >

0 if and only il I is asymptotically stable. ||H (sl —
FY7 G|l < 1. and (F. GY is controllable.

It is fuether noted that. vnlike the ease in See.2.1.
the equivalence of (C1) and (C2) no louger holds when
R < 0. An obvions exaunple is a sealar ease with F =
0, H=1wmdG=1.

Existence conditions for anti-stabilizing solntion are
also knowiw and in contrast Lo the ease in See.2.1. it holds

that Py < P < P, for any read. symmetric solntion 1.

3. Main Results

For the case whoere IV is not necossarily of definite matrix,

the main vesult of this paper is stated as follows.

Theorem 1. A necessary coudition for ¢q.(1) to possess
the stabilizing solntion P >0 is that N[\ (A)] # 0.4 =
L2,--- 20 and w*Ruw > 0 for all w # O such that
Fw = M with R[] > 0.

(Proof) We assimne that there exists a stabilizing
solution 17 > 0. Such a solution is then obtained as
P =YX where Y and X in déq.(4) are associated with
A such that R[N (A)] > 0. Then we have

PY +GGTN = YA (11)

ny — r'X = XA (12)

where RN (A)] > 0.

Thus A mnst have 7 cigenvalues with positive real
parts, and consequently the other o cigenvalues have
negative real packs. Henee RN (A)] # 001 =1,2,--- 20,
is necessary. In order to derive the remaining condition,
we asstune that there exists w # 0 such that

Fa= N, 'Il'\\[/\] > 0. (13)

Incegs (1) and (12).3f ¥ is singular. Y can be set.
without loss of generality as ¥ = [Vi. 0] with n x
(1 <m < n) matrix ¥ heing full vank. ic. vank[Y;] =
m (sce Appendix A). Here notice that the case ¥V = 0
is excliuded since otherwise 7 has only (nncontrollable)
cigenvalues with negalive veal parts. contradicting the
present problem setting. Let the nonsingnbiar matrix X
be partitioned aceordingly ax X = [X{. X3]. Morcover
for the sake of convenience. we iuclude in the above the
case where Y is nousingular with the understanding that
m =n and henee 1 < <,

Now it can be shown (sce Appendix B3 for the proof)

that there exists an n-vector d # () such that

P = . (1)
Using eqs.(1) with Q = GG (13) and (14). we then get.
0=d"(FP+PI" -~ PRP + GGT)d
=d"Fw+w P10 —w* Rw + d*GGTd (15)
(N A Pd = R + *GGTd

il

Since A+ A" > 0 and d*Pd > 0. we obtain
W Rw = (AN XV Pd+ ' GGTd > 0 (16)

Morcover d*Pd > 0. since otherwise d* Pd = 0 implies
Pd =0 and henee w = 0 by cq.(14).

Now asstming w* Ruw = 0. eq.(16) yields R{A) =0
and GTd = 0. From eq.(11). we then pok

PP+ Get =yax! (17)
leading to

YAX T d = FPd = Fuw=\w=\Pd =YX\l
(18)
Hence we get

Y(A=ANX"1d =0 (19)

Since Y = [¥}, 0. partitioning A and d = X~V aceond-
ingly results in

. Ay =\ 0 i .
(Y1 0] 0 AZ_/\I} [:ig] =0 (20
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or

YAy = M) =0 (21)

Here noting that RA(A)] > 0. R[N = 0 and dy # 0
(sce Appendix B). we see that Yy is not of full rank, a

(Q.ED.)

contricliction. Thos we get w* R > ().

Corollary 3. A necessary condition for eq.(1) to posses:
the stabilizing solution P > 0 is that R[N, (A)] # 0. i
1,2,--- 20 w* R > 0 for all w # 0 sach that Fuw =
Aw with R[A] > 0. and all the cigenvalues N of F with
R[] < 0 are (F.G)-controllable.

%

i

(Proof) From Theorem 1. we only need to prove
that all the cigenvadnes X of 7 with R{A] < 0 wmst be
(F, G)-controllable.

On the contrary. let A (R[A] < 0) be an nncontrol-
lable eigenvaline of F. Then, FTz = Ae and GTa = 0
for ® # 0. and 1t holds thal A [(')} = (=\) [(I‘] lor
R{—A} > 0. Henee ¥ is of the form of Y = [0, ¥,] and
(Q.ED.)

U R =HTH > 0in Theorem 1. the condition
w R > 0 rednces to Tl # 0 for all w # 0 such that
Fw = hw with M[A] 2 0. This is cquivalent to that the

P =YX~ cannot be positive-definite.

pair (. I7) is detectables and eoincides with the neces-

sary and sufficient. condition in Lemma 1. On the other

hand, if B = —HTJI < 0. then w* Rw > 0 can never be
satisfied. implying that all the cigenvalues of F have neg-
ative real parts, or £ is asyniptotically stable. This also
coincides with the condition in Letmna 4. The similar

arguments hold also for positive-definite sontions.

4. Conclusions

We studicd stahilizing solntions of algebraice matrix Ric-
cati equatious of the form. FP+PFT~PRP+GGT = 0.

First, several Lypical results were reviewed for the
cases where the matrix IR takes definite formns, namnely
eithee . = HTII > 0w B = —HTH < 0. In a-
ther case, existence conditions of nomegative-definite or
positive-definite stabilizing solution are obtained as nee-
essary and suflicient conditions.  Also similawitios and

Then we considered more general cases where R is
ouly asstuned to he symimetvic. Obvionsly this includes
the Riceati equations arising in Ha. control theories.
namely the case with 1= 1171 — HT I15. Specifically.
we established. in Theorent 1 and Covollary 3. necessary
conditions for the existence of nonnegative-definite or
positive-definite stabilizing solutions. These conditions

coinside with the necessary and sullicient conditions in

Sce. 2 when IR s of definite form.
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tion, Science and Culture under Grant C-05650417.

Appendix A
Here we examine astructure of mabrix Yoo cgs.(11) s
(12) with R[N (A)] > 0 for all i = 1.2, ,n. Specifically
we show that

(i) If all the cigenvalues XA of F owith R[A] < 0, if it

exists. are (F. G)-controllable. then Y] # 0.

(i) If all the cigenvalues A of F oare such that R\ < 0

and they are (F.G)-mnncontrollable, then ¥ = 0.
(iii) In other cases. Y ocan heassumed to be of the form

Y = [¥1. 0] where nox e matrix (1 <o <n) ¥ s

of full ramk., i.c. vank{¥y] = ..

We only prove the case (i), since (i) and (i) can
then be deduced readily. This is the case where there
exists at least one. but not all. cigenvalue N of F such
that R[A] < 0 and A is (F. G)-controltable. Then. snclan
cigenvalue yiclds the cigenvalue —X (hence R[—A] > 0) of
A with the correspouding cigenvector of the form [?}

Now assuine that all such cigenvectors are arranged in

Y. [Y]_[n o
X|I®Ix17ix X

(1 < < n)matrices. We then show that vank{Yj] = m.

- where Yy and Xy are nxom

Let the matrix A be partitioned in accordance with Y
J\; 0

0 A

Then from cgs.(11) and (12), we get

and X, namely A =

FY, +GGT X, = YA, (A1)

RY, — FTX| = XA (A2)

Assuning. on the contrary. that Y] is not of full rank,
there exists an m-vector by # 0 such that Yiby = 0. Thus
cqs.(Al) and (A2) yicld

GGT Xy = YAy (A3)
- ]."7:\’11;1 = XiAly (A1)

We then obtain

by A ’I"GGTXll;l =ATYVIA L = DIV X A Dy =0,
{A5)
yielding GTX1hy = 0 and YiAih; = 0. Then since
(Y7'Y1)hy = 0 and (Y Y))Ahy = 0, there exists a vee-
tor # 0 such that (Y7V) )i;l =0or Vb = 0 and

Ayby = pby. This shows Lhat g is an cigenvalue of A
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hence R[] > 00 From eqs.(A3) and (Ad) with by ve-
I

placed by by. we get

GT(X ) =0

Cs . . (A6)
FT(X\ b)) = =X\ Athy = — (X1 )

Noting that Xy # 0. ¢ {AG) shows that F his an

uncontrollable cigenvadne —p (R{—7] < 0), e that tlie

cigenvector of A associated with the cigenvalue g takes
0

the form [,\'JJ] .

Thus, with the wderstanding that such an eigen-

. . . . Y
vector is already included in the second portion of [ x|

naine . we can assuie withont loss of generality

(Q.E.D.)

I 0
that Y7 is of Tull rank.

Appendix B

We prove the following: If the stabilizing solution I ex-

ists, then there exists a vector o # 0 satisfying
Pd=w (1)

for any cigenvector w of F' corvesponding to an eigen-

value A which is cither R[] > 0 or else (I, G)-controllable.

First consider the case (iii) in Appendix A, namnely
Y = [Yy, 0] with w x m watrix Y being full rank, and
X is partitioned accordingly as X = [X;, X3]. Now,
in view of Y. F has n— m (I, G)-vmcontrollable cigeu-
values with negative real parts. Henee, W, Z and £ in
eqs.(8) and (9) can be partitioned as W = [y, Wy

Z =12y, Zy)and T = [2(3)1 ;:)2} so that By contains
these uncontrotlable cigenvalues.

Then we see that w in eq.(B1) must be one of the
colwmmns in matrix 1Vy. say i-th cobmm w; (1 < 7 <
n—1m). Now, it suflices Lo prove the existence of a vector
d = XY # 0 such that Yd = w since P = YX-!.
or equivalently an existence of an-vector dy such that

Yid; = w, since

w=Yd= 10 b =)’1l21 D2
Ilz (

Notice that Xo = Z; and XJY; = 0 by XTY = Y7TX,

and hence ZZ,TYI = 0 yielding
Yy =wzTy) = (W 2T+ w21y, = wi(27Yy) (B3)
Thus eq.(B2) canr be rewritteu as

w=Yydy = Wi(2T)d, (B4)

On the other hand. we have

ZT ; ZTY .
zv = [717] = [ 10 l] (B35)
and since mnk[ZTY]] = we obtaiu |Z] Y1| # 0. Theve-

fore, in cq.(134), we can set
dy = (ZTy) Ve (£ 0) (B36)

wlicre ¢; 15 the m-vector with only nonzero clement one
in its -th position.

Notice that the vector d i eq.{I31) is then given' as

d= 1Y(Z = [4\—1 4\’21 [’;1 ] = .X](Z’llvyl )—1(f,' -+ Xg(ig
i )
(37)
with Iiz being any (n— m)-vector.
In the case (i) in Appendix Booeq.(I37) obviously

degencrates to

d=X(ZTY) Lo, = XY ' 27T, = P 'We; = Py

(I38)
which can be readily dedueed from eq.(B1). Notice that
the case (ii) does not oceur under the present assuwmption
that w is an eigenvector of F corresponding to an eigen-
value which is cither R[A] = 0 or (F, G)-controllable.
(Q.ED.)
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