Stabilizing Solutions of Algebraic Matrix Riccati Equations in H_{∞} Control Problems

Hirovuki Kano¹ and Toshimitsu Nishimura²

 Department of Information Sciences, Tokyo Denki University, Ishizaka, Hatoyama, Hiki-gun, Saitama 350-03, Japan. (e-mail) kano@j.dendai.ac.jp (fax) +81-492-96-6403 (tel) +81-492-96-2911.

 Department of Electronics Engineering, Tokyo Engineering University, Hachioji, Tokyo 192, Japan.

Abstract

Algebraic matrix Riccati equations of the form, $FP + PF^T - PRP + Q = 0$, are analyzed with reference to the stability of closed-loop system F - PR. Here F, R and Q are $n \times n$ real matrices with $R = R^T$ and $Q = Q^T \ge 0$ (nonnegative-definite). Such equations have been playing key roles in optimal control and filtering problems with $R \ge 0$, and also in the solutions of in H_{∞} control problems with R taking the form $R = H_1^T H_1 - H_2^T H_2$. In both cases, an existence of stabilizing solution, i.e. the solution yielding asymptotically stable closed-loop system, is an important problem.

First, we briefly review the typical results when R is of definite form, namely either $R \geq 0$ as in LQG problems or $R \leq 0$. They constitute two extreme cases of Riccati equations arising in H_{∞} control theory in the sense that they correspond respectively to the cases $H_2 = 0$ and $H_1 = 0$. Necessary and sufficient conditions are shown for the existence of nonnegative-definite or positive-definite stabilizing solution.

Secondly, we focus our attention on more general case where R is only assumed to be symmetric, which obviously includes the case for H_{∞} control problems. Here, necessary conditions are established for the existence of nonnegative-definite or positive-definite stabilizing solutions. The results are established by employing consistently the so-called algebraic method based on an eigenvalue problem of a Hamiltonian matrix.

1. Introduction and Preliminaries

We consider algebraic matrix Riccati equations of the following form.

$$FP + PF^T - PRP + Q = 0 (1)$$

where F, R and Q are $n \times n$ real matrices and it is assumed that $R = R^T$ and $Q = Q^T \ge 0$. The closed-loop system associated with eq.(1) is given as

$$F_c = F - PR \tag{2}$$

Notice that, in the typical H_{∞} -control problems, the matrix R takes the form of $R = H_1^T H_1 - H_2^T H_2$. Here we consider existence conditions of real nonnegative-definite or positive-definite stabilizing solutions of eq.(1), i.e., the real solution $P \geq 0$ or P > 0 such that F_c in eq.(2) is an asymptotically stable matrix.

As in the case of matrix Riccati equations for optimal regulator and Kalman filter, eq.(1) can be analyzed by the so-called algebraic method. Let A be the $2n \times 2n$ Hamiltonian matrix defined by

$$A = \begin{bmatrix} F & Q \\ R & -F^T \end{bmatrix}. \tag{3}$$

Solving the eigenvalue problem for A, arbitrary n eigenvalue eigenvector relation can be written as

$$A \begin{bmatrix} Y \\ X \end{bmatrix} = \begin{bmatrix} Y \\ X \end{bmatrix} \Lambda \tag{4}$$

where Y and X are $n \times n$ matrices consisting of upper and lower halves of eigenvectors, and $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_n\}$ is the matrix consisting of n eigenvalues of A. Then a solution of eq.(1) can be obtained as

$$P = YX^{-1} \quad \text{if} \quad |X| \neq 0$$
 (5)

In this case, the closed-loop system matrix in eq.(2) is expressed as

$$F_c = -X^{-T}\Lambda X^T. ag{6}$$

It should be noted that the ordering of n eigenvalues and eigenvectors in eq.(4) is immaterial on computing the solution P by eq.(5). Also the following assertion holds in eq.(4):

$$X^*Y = Y^*X \quad \text{if} \quad \lambda_i + \lambda_j^* \neq 0, \quad 1 \leq i, j \leq n$$

$$X^TY = Y^TX \quad \text{if} \quad \lambda_i + \lambda_j \neq 0, \quad 1 \leq i, j \leq n$$
(7)

For the development of theory, we introduce the similarity transformation for F and F^T ,

$$FW = W\Sigma \tag{8}$$

$$F^T Z = Z \Sigma \tag{9}$$

Here W and Z can be chosen as

$$WZ^T = W^T Z = I \ (n \times n \text{ identity matrix})$$
 (10)

The concepts of controllability, stabilizability, observability and detectability play important roles in characterizing solutions of matrix Riccati equations, and are presented below for convenience. Consider linear time-invariant control systems.

$$\dot{x}(t) = Fx(t) + Gu(t), \ x(t_0) = x_0$$
$$y(t) = Hx(t)$$

with x, u and y being system state, input and output vectors, respectively. Then,

Definition 1. An eigenvalue λ of F is said to be (F,G)-uncontrollable ((H,F)-unobservable) if there exists an n-vector $w \neq 0$ such that $F^Tw = \lambda w$ and $G^Tw = 0$ $(Fw = \lambda w$ and Hw = 0). Otherwise λ is said to be (F,G)-controllable ((H,F)-observable.

Definition 2. A pair (F,G) is said to be controllable ((H,F) is said to be observable) if all the eigenvalues λ of F are (F,G)-controllable ((H,F)-observable).

Definition 3. A pair (F,G) is said to be stabilizable ((H,F) is said to be detectable) if all the eigenvalues λ of F with $\Re[\lambda] \geq 0$ are (F,G)-controllable ((H,F)-observable.

Finally, since $Q \ge 0$, we set $Q = GG^T$ in the subsequent sections.

2. The Case $R \ge 0$ and $R \le 0$

2.1. The Case $R \geq 0$

The case $R \geq 0$ corresponds to algebraic matrix Riccati equations in Kalman filters or optimal regulators, and has been studied in detail. Clearly, from eqs.(4)-(6), the stabilizing solution yielding asymptotically stable closed-loop system in eq.(2) is obtained as $P = YX^{-1}$ with $\Re[\lambda_i(\Lambda)] > 0$, $i = 1, 2, \dots, n$. Letting $R = H^TH$.

its existence is established (Kucera 1972) as

Lemma 1. There exists a stabilizing solution $P \ge 0$ if and only if A has no eigenvalue on the imaginary axis and the pair (H, F) is detectable.

For positive-definite stabilizing solution, we have (Kano 1987)

Lemma 2. There exists a stabilizing solution P > 0 if and only if the pair (-F, G) is stabilizable and (H, F) is detectable.

It is known that the following conditions (C1) and (C2) are equivalent.

- (C1) A has no eigenvalue on the imaginary axis.
- (C2) All the eigenvalues of F on the imaginary axis, if they exist, are (F, G)-controllable and (H, F) -observable.

Thus, the condition (C1) appearing in these lemmas can be replaced by (C2), which in view of (H, F)-detectability further replaced by

(C3) All the eigenvalues of F on the imaginary axis, if they exist, are (F, G)-controllable.

Therfore Lemma 1 can be rewritten as

Corollary 1. There exists a stabilizing solution $P \geq 0$ if and only if the pair (H, F) is detectable and all the eigenvalues of F on the imaginary axis are (F, G)-controllable.

Several remarks are in order. In contrast to the stabilizing solution, we may consister the so-called antistabilizing solution for which all the eigenvalues of the closed-loop system have positive real parts. An existence condition of such a solution is known. Moreover, if stabilizing and anti-stabilizing solutions, denoted respectively as P_s and P_a , exist, then it holds that $P_a \leq P \leq P_s$ for any real symmetric solution P. These solutions constitute lattice with P_s and P_a the maximum and minimum elements respectively.

2.2. The Case $R \leq 0$

Similarly as in Sec.2.1, we have the following existence condition for stabilizing solution (Kano and Nishimura 1993) by letting $R = -H^T H$.

Lemma 3. There exists a stabilizing solution P if and only if A has no eigenvalue on the imaginary axis and the pair (H, F) is detectable.

It is noted that the above condition is the same as in Lemma 1 except that the stabilizing solution is not necessarily nonnegative-definite in this case. An obvious example is a scalar equation $p^2 + 3p + 2 = 0$.

Existence conditions for nonnegative-definite—and positive-definite P can then be derived as (Nishimura 1990)

Lemma 4. There exists a stabilizing solution $P \ge 0$ if and only if A has no eigenvalue on the imaginary axis and F is asymptotically stable.

Lemma 5. There exists a stabilizing solution P > 0 if and only if A has no eigenvalue on the imaginary axis. F is asymptotically stable, and (F, G) is controllable.

If F is asymptotically stable, then the condition (C1) in Sec.2.1 is equivalent to

(C4)
$$||H(sI-F)^{-1}G||_{\infty} < 1$$
.

Here $\|\cdot\|_{\infty}$ denotes the H_{∞} norm. Then the corresponding statements in Lemmas 4 and 5 can be equivalently replaced by (C4) (but not in Lemma 3), and hence

Corollary 2. There exists a stabilizing solution $P \ge 0$ if and only if F is asymptotically stable and $||H(sI - F)^{-1}G||_{\infty} < 1$.

Corollary 3. There exists a stabilizing solution P > 0 if and only if F is asymptotically stable. $||H(sI - F)^{-1}G||_{\infty} < 1$, and (F, G) is controllable.

It is further noted that, unlike the case in Sec.2.1, the equivalence of (C1) and (C2) no longer holds when $R \leq 0$. An obvious example is a scalar case with F = 0, H = 1 and G = 1.

Existence conditions for anti-stabilizing solution are also known, and in contrast to the case in Sec. 2.1, it holds that $P_s \leq P \leq P_a$ for any real, symmetric solution P.

3. Main Results

For the case where R is not necessarily of definite matrix, the main result of this paper is stated as follows.

Theorem 1. A necessary condition for eq.(1) to possess the stabilizing solution $P \geq 0$ is that $\Re[\lambda_i(A)] \neq 0$, $i = 1, 2, \dots, 2n$, and $w^*Rw > 0$ for all $w \neq 0$ such that $Fw = \lambda w$ with $\Re[\lambda] \geq 0$.

(Proof) We assume that there exists a stabilizing solution $P \geq 0$. Such a solution is then obtained as $P = YX^{-1}$ where Y and X in eq.(4) are associated with A such that $\Re[\lambda_i(\Lambda)] > 0$. Then we have

$$FY + GG^T X = Y\Lambda \tag{11}$$

$$HY - F^T X = X\Lambda \tag{12}$$

where $\Re[\lambda_i(\Lambda)] > 0$.

Thus A must have n eigenvalues with positive real parts, and consequently the other n eigenvalues have negative real parts. Hence $\Re[\lambda_i(A)] \neq 0$, $i = 1, 2, \dots, 2n$ is necessary. In order to derive the remaining condition, we assume that there exists $w \neq 0$ such that

$$Fw = \lambda w, \quad \Re[\lambda] \ge 0. \tag{13}$$

In eqs.(11) and (12), if Y is singular, Y can be set without loss of generality as $Y = [Y_1, 0]$ with $n \times m$ $(1 \le m < n)$ matrix Y_1 being full rank, i.e. rank $[Y_1] = m$ (see Appendix A). Here notice that the case Y = 0 is excluded since otherwise F has only (uncontrollable) eigenvalues with negative real parts, contradicting the present problem setting. Let the nonsingular matrix X be partitioned accordingly as $X = [X_1, X_2]$. Moreover for the sake of convenience, we include in the above the case where Y is nonsingular with the understanding that m = n and hence $1 \le m \le n$.

Now it can be shown (see Appendix B for the proof) that there exists an n-vector $d \neq 0$ such that

$$Pd = w. (14)$$

Using eqs.(1) with $Q = GG^T$. (13) and (14), we then get

$$0 = d^{*}(FP + PF^{T} - PRP + GG^{T})d$$

$$= d^{*}Fw + w^{*}F^{T}d - w^{*}Rw + d^{*}GG^{T}d$$

$$= (\lambda + \lambda^{*})d^{*}Pd - w^{*}Rw + d^{*}GG^{T}d$$
(15)

Since $\lambda + \lambda^* \ge 0$ and $d^*Pd > 0$, we obtain

$$w^*Rw = (\lambda + \lambda^*)d^*Pd + d^*GG^Td \ge 0 \tag{16}$$

Moreover $d^*Pd > 0$, since otherwise $d^*Pd = 0$ implies Pd = 0 and hence w = 0 by eq.(14).

Now assuming $w^*Rw = 0$, eq.(16) yields $\Re[\lambda] = 0$ and $G^Td = 0$. From eq.(11), we then get

$$FP + GG^T = Y\Lambda X^{-1} \tag{17}$$

leading to

$$Y\Lambda X^{-1}d = FPd = Fw = \lambda w = \lambda Pd = \lambda YX^{-1}d.$$
(18)

Hence we get

$$Y(\Lambda - \lambda I)X^{-1}d = 0 \tag{19}$$

Since $Y = [Y_1, 0]$, partitioning Λ and $\hat{d} = X^{-1}d$ accordingly results in

$$[Y_1 \quad 0] \begin{bmatrix} \Lambda_1 - \lambda I & 0 \\ 0 & \Lambda_2 - \lambda I \end{bmatrix} \begin{bmatrix} \hat{d}_1 \\ \hat{d}_2 \end{bmatrix} = 0 \quad (20)$$

$$Y_1(\Lambda_1 - \lambda I)\hat{d}_1 = 0. \tag{21}$$

Here noting that $\Re[\lambda(\Lambda_1)] > 0$. $\Re[\lambda] = 0$ and $\hat{d}_1 \neq 0$ (see Appendix B), we see that Y_1 is not of full rank, a contradiction. Thus we get $w^*Rw > 0$. (O.E.D.)

Corollary 3. A necessary condition for eq.(1) to possess the stabilizing solution P > 0 is that $\Re[\lambda_i(A)] \neq 0$, $i = 1, 2, \dots, 2n$, $w^*Rw > 0$ for all $w \neq 0$ such that $Fw = \lambda w$ with $\Re[\lambda] \geq 0$, and all the eigenvalues λ of F with $\Re[\lambda] < 0$ are (F, G)-controllable.

(Proof) From Theorem 1, we only need to prove that all the eigenvalues λ of F with $\Re[\lambda] < 0$ must be (F,G)-controllable.

On the contrary, let λ ($\Re[\lambda] < 0$) be an uncontrollable eigenvalue of F. Then, $F^T x = \lambda x$ and $G^T x = 0$ for $x \neq 0$, and it holds that $A \begin{bmatrix} 0 \\ x \end{bmatrix} = (-\lambda) \begin{bmatrix} 0 \\ x \end{bmatrix}$ for $\Re[-\lambda] > 0$. Hence Y is of the form of $Y = [0, Y_1]$ and $P = YX^{-1}$ cannot be positive-definite. (Q.E.D.)

If $R = H^T H \geq 0$ in Theorem 1, the condition $w^*Rw > 0$ reduces to $Hw \neq 0$ for all $w \neq 0$ such that $Fw = \lambda w$ with $\Re[\lambda] \geq 0$. This is equivalent to that the pair (H, F) is detectable, and coincides with the necessary and sufficient condition in Lemma 1. On the other

hand, if $R = -H^T H \leq 0$, then $w^*Rw > 0$ can never be satisfied, implying that all the eigenvalues of F have negative real parts, or F is asymptotically stable. This also coincides with the condition in Lemma 4. The similar arguments hold also for positive-definite soutions.

4. Conclusions

We studied stabilizing solutions of algebraic matrix Riecati equations of the form, $FP+PF^T-PRP+GG^T=0$.

First, several typical results were reviewed for the cases where the matrix R takes definite forms, namely either $R = H^T H \geq 0$ or $R = -H^T H \leq 0$. In either case, existence conditions of nonnegative-definite or positive-definite stabilizing solution are obtained as necessary and sufficient conditions. Also similarities and differences among these two cases were discussed.

Then we considered more general cases where R is only assumed to be symmetric. Obviously this includes the Riccati equations arising in H_{∞} control theories, namely the case with $R = H_1^T H_1 - H_2^T H_2$. Specifically, we established, in Theorem 1 and Corollary 3, necessary conditions for the existence of nonnegative-definite or positive-definite stabilizing solutions. These conditions coinside with the necessary and sufficient conditions in

Sec. 2 when R is of definite form.

This work was supported in part by a Grant-in-Aid for General Scientific Research of The Ministry of Education, Science and Culture under Grant C-05650417.

Appendix A

Here we examine a structure of matrix Y in eqs.(11) and (12) with $\Re[\lambda_i(\Lambda)] > 0$ for all $i = 1, 2, \dots, n$. Specifically we show that

- (i) If all the eigenvalues λ of F with $\Re[\lambda] < 0$, if it exists, are (F, G)-controllable, then $|Y| \neq 0$.
- (ii) If all the eigenvalues λ of F are such that $\Re[\lambda] < 0$ and they are (F, G)-uncontrollable, then Y = 0.
- (iii) In other cases, Y can be assumed to be of the form $Y = [Y_1, 0]$ where $n \times m$ matrix $(1 \le m < n) | Y_1 |$ is of full rank, i.e. rank $[Y_1] = m$.

We only prove the case (iii), since (i) and (ii) can then be deduced readily. This is the case where there exists at least one, but not all, eigenvalue λ of F such that $\Re[\lambda] < 0$ and λ is (F,G)-controllable. Then, such an eigenvalue yields the eigenvalue $-\lambda$ (hence $\Re[-\lambda] > 0$) of A with the corresponding eigenvector of the form $\begin{bmatrix} 0 \\ x \end{bmatrix}$. Now assume that all such eigenvectors are arranged in

 $\begin{bmatrix} Y \\ X \end{bmatrix} \text{ as } \begin{bmatrix} Y \\ X \end{bmatrix} = \begin{bmatrix} Y_1 & 0 \\ X_1 & X_2 \end{bmatrix} \text{. where } Y_1 \text{ and } X_1 \text{ are } n \times m \\ (1 \leq m < n) \text{ matrices.} \text{ We then show that } \operatorname{rank}[Y_1] = m. \\ \text{Let the matrix } \Lambda \text{ be partitioned in accordance with } Y \\ \text{and } X, \text{ namely } \Lambda = \begin{bmatrix} \Lambda_1 & 0 \\ 0 & \Lambda_2 \end{bmatrix}.$

Then from eqs. (11) and (12), we get

$$FY_1 + GG^T X_1 = Y_1 \Lambda_1 \tag{A1}$$

$$RY_1 - F^T X_1 = X_1 \Lambda_1 \tag{A2}$$

Assuming, on the contrary, that Y_1 is not of full rank, there exists an m-vector $b_1 \neq 0$ such that $Y_1b_1 = 0$. Thus eqs.(A1) and (A2) yield

$$GG^T X_1 b_1 = Y_1 \Lambda_1 b_1 \tag{A3}$$

$$-F^T X_1 b_1 = X_1 \Lambda_1 b_1 \tag{A4}$$

We then obtain

$$b_1^* X_1^* G G^T X_1 b_1 = b_1^* X_1^* Y_1 \Lambda_1 b_1 = b_1^* Y_1^* X_1^* \Lambda_1 b_1 = 0.$$
(A5)

yielding $G^TX_1b_1=0$ and $Y_1\Lambda_1b_1=0$. Then since $(Y_1^*Y_1)b_1=0$ and $(Y_1^*Y_1)\Lambda_1b_1=0$, there exists a vector $\hat{b}_1\neq 0$ such that $(Y_1^*Y_1)\hat{b}_1=0$ or $Y_1\hat{b}_1=0$ and $\Lambda_1\hat{b}_1=\mu\hat{b}_1$. This shows that μ is an eigenvalue of Λ_1

hence $\Re[\mu] > 0$. From eqs.(A3) and (A4) with b_1 replaced by \hat{b}_1 , we get

$$G^{T}(X_{1}\hat{b}_{1}) = 0$$

$$F^{T}(X_{1}\hat{b}_{1}) = -X_{1}\Lambda_{1}\hat{b}_{1} = -\mu(X_{1}\hat{b}_{1})$$
(A6)

Noting that $X_1\hat{b}_1 \neq 0$, eq.(A6) shows that F has an uncontrollable eigenvalue $-\mu$ ($\Re[-\mu] < 0$), and that the eigenvector of A associated with the eigenvalue μ takes the form $\begin{bmatrix} 0 \\ X_1\hat{b}_1 \end{bmatrix}$.

Thus, with the understanding that such an eigenfactor

Thus, with the understanding that such an eigenvector is already included in the second portion of $\begin{bmatrix} Y \\ X \end{bmatrix}$, namely $\begin{bmatrix} 0 \\ X_2 \end{bmatrix}$, we can assume without loss of generality that Y_1 is of full rank. (Q.E.D.)

Appendix B

We prove the following: If the stabilizing solution P exists, then there exists a vector $d \neq 0$ satisfying

$$Pd = w \tag{B1}$$

for any eigenvector w of F corresponding to an eigenvalue λ which is either $\Re[\lambda] \geq 0$ or else (F,G)-controllable.

First consider the case (iii) in Appendix A, namely $Y=\{Y_1,\ 0\}$ with $n\times m$ matrix Y_1 being full rank, and X is partitioned accordingly as $X=\{X_1,\ X_2\}$. Now, in view of Y, F has n-m (F, G)-uncontrollable eigenvalues with negative real parts. Hence, W, Z and Σ in eqs.(8) and (9) can be partitioned as $W=[W_1,\ W_2]$. $Z=[Z_1,\ Z_2]$ and $\Sigma=\begin{bmatrix}\Sigma_1&0\\0&\Sigma_2\end{bmatrix}$ so that Σ_2 contains these uncontrollable eigenvalues.

Then we see that w in eq.(B1) must be one of the columns in matrix W_1 , say i-th column w_i ($1 \le i \le n-m$). Now, it suffices to prove the existence of a vector $\hat{d} = X^{-1}d \ne 0$ such that $Y\hat{d} = w$ since $P = YX^{-1}$, or equivalently an existence of m-vector \hat{d}_1 such that $Y_1\hat{d}_1 = w$, since

$$w = Y\hat{d} = \begin{bmatrix} Y_1 & 0 \end{bmatrix} \begin{bmatrix} \hat{d}_1 \\ \hat{d}_2 \end{bmatrix} = Y_1\hat{d}_1 \tag{B2}$$

Notice that $X_2 = Z_2$ and $X_2^T Y_1 = 0$ by $X^T Y = Y^T X$, and hence $Z_2^T Y_1 = 0$ yielding

$$Y_1 = WZ^TY_1 = (W_1Z_1^T + W_2Z_2^T)Y_1 = W_1(Z_1^TY_1)$$
 (B3)

Thus eq.(B2) can be rewritten as

$$w = Y_1 \hat{d}_1 = W_1(Z_1^T Y_1) \hat{d}_1 \tag{B4}$$

On the other hand, we have

$$Z^T Y_1 = \begin{bmatrix} Z_1^T \\ Z_2^T \end{bmatrix} Y_1 = \begin{bmatrix} Z_1^T Y_1 \\ 0 \end{bmatrix} \tag{B5}$$

and since rank $[Z^TY_1] = m$ we obtain $|Z_1^TY_1| \neq 0$. Therefore, in eq.(B4), we can set

$$\hat{d}_1 = (Z_1^T Y_1)^{-1} e_i \ (\neq 0) \tag{B6}$$

where e_i is the m-vector with only nonzero element one in its i-th position.

Notice that the vector d in eq.(B1) is then given as

$$d = X\hat{d} = \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} \hat{d}_1 \\ \hat{d}_2 \end{bmatrix} = X_1 (Z_1^T Y_1)^{-1} e_i + X_2 \hat{d}_2$$
(B7)

with \hat{d}_2 being any (n-m)-vector.

In the case (i) in Appendix B. eq.(B7) obviously degenerates to

$$d = X(Z^TY)^{-1}e_i = XY^{-1}Z^{-T}e_i = P^{-1}We_i = P^{-1}w_i$$
(B8)

which can be readily deduced from eq.(B1). Notice that the case (ii) does not occur under the present assumption that w is an eigenvector of F corresponding to an eigenvalue which is either $\Re[\lambda] \geq 0$ or (F, G)-controllable. (Q.E.D.)

References

- Kucera, V. (1972a). A contribution to matrix quadratic equations. IEEE Trans. Automatic Control, AC-17, pp.344-347.
- [2] Kucera, V. (1972b). On nonnegative-definite solutions to matrix quadratic equations, Automatica, 8, pp.413-423.
- [3] Kano, H. (1987). Existence condition of positivedefinite solutions for algebraic matrix Riccati equations, Automatica. 23-3. pp.393-397.
- [4] Nishimura, T. (1990). Nonnegative-definite solutions of matrix Riccati equations having nonpositivedefinite weighting matrices. Proc. 10th SICE Symposium on Adaptive Control.
- [5] Kano, H. and T. Nishimura (1993), Nonnegativedefinite solutions of algebraic matrix Riccati equations with nonnegative-definite quadratic and constant terms, presented at the 1993 MTNS, Germany.
- [6] Nishimura, T. (1991). Generalized existence conditions for solutions of matrix Riccati equations in the H_{∞} theory. Proc. 13th SICE Dynamical System Theory Symposium, pp.19-24.