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Abstract

This paper is concerned wilh assess the possibility of
robust pole assignment of proportional inlegral(PI) state
feedback control system. First, the equivalence relalions
between a Pl control system and an argumented control
syslem proposed by Kawaji and Kim(1994) are extended
from the new points of views of invariant closed loop poles.
Second, on the relations, a remarkable result that the in-
legral gain of PI control system is directly related to the
tnsensitivity of system is presented. And, it is shown that
the design of robust PI pole assigniment is possible under

the cerlain conditions.

1. Introduction

The importance of robust state feedback control has
been recognized by many rescarchers and emphasized in
the model with uncertainty. In the designs ol state feed-
back law, the pole assignineut is central and several algo-
rithins bave heen proposed. The best known approaches
from a numberical point of view are (1) implicit QR
methodst 0 (2) malrix equalion method!! (3) solution
via real Schur forml121 (1)SVD based method®). The last
ounc is known a robust pole assignment method and iter-
alive cigenstructure method used in some control design
soltware e.g., MATLAB(by the MathWorks, Inc.,1987).

In the practical control systems, however, Lhere are
many disturbances, parameter variations and noises, and
these unprediclable disturbances have an eflect on the
sleady-stale responses. So, a more robust controller is
required,

As is well known, a Pl controller can reject constant dis-
turbances, and has attractive regulation of stales in the
system with parameter variations. I'rom these properties,
the Pl control have been applied for tnany processing con-
trol fieldstl 20 11,

On the other hand, a Pl obscrver has been pro-

posed by Wojcicchowsk(1978) as an interesting part, and

lime recovery(steady - stale recovery) with Pl observer
based control systemn has been shown by pole assigniment
method3l, Also, the simultancous recovery of loop trans-
ler property and disturbance attenuation properly by Pl
observer is studied by Kawaji and Kim(1994) using the
conventional LQG/LTR and the duals of equivalence rela-
tions between a Pl conlrol systemn and an argumented con-
trol system. But, in the design method of PI controller,
the robustness of pole assignment is an open problem.
The aim of this paper is to assess Lhe possibility of ro-
bust PI pole assignment while keeping the structural ad-
vantages of Pl controller, such as constani disturbance
cancellation, perfect regulation and reduced sensitivity to
parameter variations under the condition of full state fced-
back control. A proposed proof and a remakable facts
arc shown as follows: I'irst, the equivalence relations pro-
posed by Kawaji and Kim(1994) are extended fromn the
new points of views of invariant poles. Sccond, under the
pole assignment method by Kautsky el.al. (1985), the in-
sensitivity of Pl conlrol syslem is compared with that of
argumented control system by condition number, and it
is shown that the integral gain of PI controller is related
to the insensitivily of system. Aund, it is shown that the
design of robust PI pole assignment is possible under the

certain conditions.

Notation

U(A, B,C) Realization of linear systemn specificd by the
Lime domain description
() = Ar(t) + Bu(t),
y(1) = Cx(l)

K, (X) Condition number of matrix X i.c.,
K(X) =l X [lr -1 X" e

e Frobenius norm

I n-square matrix with I's on the diagonal and
0's eclsewhere

0, n-square matrix with 0’s
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Lo n x m dimension matrix with 1's on the diag-
onal ol min{n,m) and 0’s elsewhere

By xm n > e dimension matbrix with 0's

A* Complex conjugate malrix of A

AF Pseudoinverse malrix ol A

Bt Spectral norm

[A . Maximum singular value

Tmin Miniinmm singular value

2. Equivalent systems and problem
statements

We consider the following lincar Lime imvariant system:
Spr: B(A, B,C) (n

where x{t) € ™ is slate vector, u(4) € ™ conlrol input,
and y(t) € R” measurement oulput. [t is assumed that
(A, B) is controllable.

A proportional integral control inpul is given as
u(t)=—Hpr(l) — w(i) -+ v(t) (2)
sw(l) = II,/:r(i,)cIt
where v(t) is the external noise, and Hp and Hy are pro-

portional and integral gains.

I7irst, we assume that

(A1) B=|  Dn»
O(n—m)xm

where 3, is arbitrary matrix. For withoul loss of gener-
ality, i matrix I3 is nol a form of (A1) in the system Ypy,
we should be reconstruct the system’s matrices ol the ¥py

and inpul's gains of (2) by transformation malrix U/* as

G=vu"p C=cu
and H;= 1" (3

A=U AU,
Hp = Hpll™™",

where U* is oblained by SVI{(Singular Value Decomposi-
tion) of I3 as B 2 v

The reconstructed system whose system’s matrices are
consisted as (3) is denoted as Lpy, and is illustrated by
Fig. 1.(a). And. its closed loop transfer function is ob-

tained as
Gri(s) = C(sl — A4 BHp + Bs™' 1)~ (1)
Second, we consider an argumenled system g

Sr (A B, L) (5)

'i In,xm . I}
e [ Lm0 ] 2 Be = {0,,, } ’

and, 7.(4) = ()T €))7 is slate veclor.

("= [ O O ]

Let the input of Lthe argumented syslen X g be given by
well) = = Har () 4V o(fy = =1 1 e ) - o(ly  (6)
Then, the closed loop transfer function of Yp is given by

Gr(s) = Celshppm) — Ae+ B )" Be (M)

Al s losed loop systenm i tlhiatraled by Fieo (b

r =
L e () y

-AY}——={ C

(b) Argumented control system

Iig. 1. Configurations ol PI control system and
argumented control system

In general equivalent syst,oms[ﬁ], there are four invariant
conditions betweens equivalent systems, c.g., closed loop
transfer function, poles of closed loop system, gramians of
condrollability and obscervability, and invariant zeros!D,

Kawaji and Kim(1991) have shown thal equivalency of
Lwo systems Sp; and Sg from the invariant closed loop
transfer functions. llere, we will extend the result to the
cquivalency of two systems by the point of views invariant
poles.

Following proposition shows the equivalency of syslems

by using invariant poles.

Proposition 1 :  Consider the lwo systems Sprand 3,
and suppose 3 is form of the (A1). If

Blip=BH, (8)
BﬁI:(I}I,2_Iylxvn)lvlvxn (9)

are salisfied, then the poles of closed loop system of Srr
equal o those of ¥,

( The proofl is given in Appendix A.)

I'rom the proposition, it is found that the equivalency
of system exists, and the argumented control system is
the system with state feedback controller. So, if the state
lcedback gain of argumented system is oblained, then the
gains of Pl controller are caleulated by subsitituting the
state feedback gain into equivalence relations (8) and (9).
But, it 1s an open problem that guarantecing the robust-

ness of PIcontrol system.
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The problem to be discussed, in this paper, is defined
as follows:
Problem :  When the Pl controller is designed by using
cquivalence rclations, is il guaranteed the robustness of Pl
control system ? And what relation exists belweens lhe

robustness of two syslems ¢

3. Assessment of robust PI pole
assignment

The robust pole assignment problem is to choose the
matrices Hp and 1} so that the eigenvalues of closed loop
system are as insensilive Lo pertubations in the closed loop
systemn as possible.

Let's define Ml = A — Bllp — Bil €l yyn. H M is di-
agonalizable and X € R"+™) is a matrix whose columns
are the eigenvector of M then a measure of the sensitiv-
ity of the cigenvalues thal applics to both small and large
perlurbations is the condition number

In order Lo minimize the sensitivity of the closed-loop
cigenvalues, the condition number K¢(X) should be min-
imized under the constraint of given A, I3 and eigenvalues

Ae={M A - Npm ) as

mink¢(X) (10)
where,

MX = X diag{A.}

Thus, the problem of robust pole assignment reduces o
design conlroller gain /fp and J; such that minimize (10).

On the equivalence relations of systems mentioned in
section 2, first we consider pole assignment problem of
argumented systemn, and it can be parameterized using

lollowing lemma.

Lemma 1 :3 Given the cigenvalues A, and non-singular
X., there exist 1, a state feedback law of (6), i and only

if

UT(AX, — X, -diag{A.}) =0 (1)
where
7 Z ¢
B, = [lf(, U, ] [ 5 ] (12)

with 7 = [l/y U,] orthogonal and Z non-singular. H, is

then given by

no=7""UT AN~ A) (1)

In the lemnma |, the problem is to obtain the malrix X,
minimizing condition number of X, and it is discussed
as a lopic by some rescarchert 81, Kautsky el.al (1985)
proposed a method and it has been used as a robusl,

pole assignment method in MATLAB software. However,

when the Pl controller is designed by using cqnivalence re-
lations in section 2, minimizing of the condition number
ol PI control system is an open problem.

Thus, under the pole assingment method by Kautsky
cl.al.(1985) in this section the problem is to study that
whalt relation exists between condition numbers, and what
element is subjected to inscnsitivity of system.

The gencral property of condition number has been
known by following lemma.

Lemma 2 :!U3] The condition number Ks(X.) has invari-
and property with respect lo unilary similarity ransforma-

tion.

In order to investigale the transformation matrix be-
tween the two systems, a following matrices are consid-
cred. Let the closed loop transfer function matrices, G
and Gpy, be considered in the Gg(s) and Gpr(s) which is
closed loop transfer function of Xp;, as follows

o= [ A= BH; ~(BHy— Lixm) } (1)

mxn 0771 ’
. A=Blty -8
m:[ " r 0] (15)

If B is a form of (A1), then a non-
singular transformation malrir exisls between closed loop

Proposition 2 :

ransfer relations matrices Gg and Gpy as

TG]:;T_I = Gpy (16)

( The prool is given in Appendix 13. )

In the two closed loop system Lp and Epy, in order to
the condition numbers to be equal each other, the follow-

ing condition is proposed.

Proportion 3 :
satisfied as

If the integral gain matiir of Gpi(s) is

Unm.r["l] = Gmin[’[l] =] (lT)

Then, the closed loop system Gpi(s) has equal inscnsitiv-
ily as Gg(s).

The proof is given in Appendix C. )
g

According to the proposition 3, to make equals the con-
dition numbers of two closed loop systein each other, it
should be satisfied that opa[/11] = owi[Hr] = 1. How-
ever it is difficult to design the intergral gain of PI con-
troller satisfied as above. And, il is a luture problem to
design method satisfying (17).

Although integral gain not satisfied ahove conditions,
the PI control system can be keeping Lhe structure advan-
tages Lhat constant disturbances cancellation, perfect reg-

ulation and reduced sensitivity to parameter variations.
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4. Numberical example

To Wllustrate the robustuess of Pl control system, fol-
towing example is given, and the responses of PH control
systemrand Lhe argumented control system are compared
with each olher.

We consider a nominal system matrix Ay, I3 and

«hich was nsed as an example in Beale and Shafai(1939),

[0 | 0 0
oo ~1.89 039  -5.555
e 0 —0.034 298 243

L 0.031 —0.0011 —0.99 —0.21

N 0

036 1.6 L0 00
B=1 005 —0.032 ’C‘{o 10 n]

0.03 0

The'system included Lhe uncertaintics §4 as

00 0 0
no 0 —1.222
0 0 0.387 0529
00 0 0.18

A =

irsl, becanse 3 matrix is not a form of (A1), we re-
construcl the system’s matrices by using transformation

malrix as mentioned in Appendix A as follows,

Ao=1"All"™", B=1rB, C=CU", and

1

FA=U*6AU" (18)
where {77 is obtained by SVD of 7 as

-0.0000 0.9876 —0.1568 0.0055
0.0000. —0.1569 ~0.9871 0.0308
0.9995 —0.0000L  0.0009 0.0311

—0.03114  —-0.00062  0.0313 0.9990

1 =

Let the desired closed loop poles he given as
Ao = {2036 4 2.03] —3400£2.96] — 10 —15)

We construct the argumented system L and design
the gains of Pl controller by robust pole assignment
method{Kautsky el.al, 1986). The gains of Pl controller
are calenlated by (8) and (9), and it should be transform

by (29) and (30) mentioned in Appendix A as
Ho = —HR9283 1.3603 52.965 2070.01
P70 O1273740 85479 15157~ 477259
‘” | —0.000 689310 2193.9 363.31
r= 0.000 —1273812 -5177.8 —6306.18
Let’s the initial value of state variable are given as

2(0) = [0.000 - 0.01 0.000 ().0(1()]T

And, implementations of argnmented controller and 11
controller are presented under the external step distur-
hances is given, where the external step disturbances arve

given as
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v(1) = [-0.005 — 0.005]7

-The state responses of simulation are shown by Fig.
2.(a) to (d) in Pl and argumented control systems in-
cluding uncertainties with or without external step dis-
turbances, respectively.

From the resulls, we can know the facts thal the ar-
gumented control system keep a step disturbances can-
cellation, regulation and reduced sensitivity to parameter
variations as Pl control systemn, but the specd of PI con-
trol system’s regulation is better than that of argumneted
control system. So, the effectivness of the robusiness of

PI control system was verified by numerical example.

5. CONCLUSION

In this paper we have derived a new proof of closed loop
equivalency between P control system and argnmented
control system under the conditions of invariant poles. By
based on the equivalency, the fact is considered : in the
robust Pl pole assignment the insensitivity of PI control
system is scaled by condition number, and it is shown that
the condition number is related to the integral gain of PI
control system.

Thus, it is asserted that the robust PI controller can
be designed by robust pole assignment method under the
cerlain conditions, And, the robustness of PI controller
is shown by the numberical example in the system with

uncertainties and external step disturbances.
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Appendix

In this appendix, we show the factls afliliated with sec-
tion 2 that the stable condition of PI control system and
the necessary condition of assumption (A1) in proposi-
tion A.l and A.2, respectively.

First, a basic stable condition of Pl control system is

represented as following.

Proposition A.1 :  The PI control system is stable if

and only if all the eigenvalues of the malrix

R = [ A ~”11311,, ~OB ] (19)
have negative real parts.
Proof: From the Xp; and (2), il is rewrilten as
&(t) = Azx(t) — Blipz(t) — Bw(l) + Bu(t) (20)

o) = Hyx(t)

Suppose the stale variable is [¢(£)T «(8)7]T. From (20),

it is reconstructed as

#(t A-BHp —B[ 2t B (
[wzz))]z[ T ][wgz”*[om]”(t) (21)

Thus, the proof is proved casily and it is shown as the
dual property of Pl observer®. [

Sccond, the necessary condition of (A1) is discussed as

following proposition.

Proposition A.2 :  Suppose an equivalence relations

belween two closcd loop systems o Ypr and B as follows
¥

Bilp=DII, (22)



Bﬁl=(ﬁ”2_ lnxm)’mxn (23)

If B3 is a form of (A1), then there exisls mulual equiva-
lence relationship.

Proof: From (23), it is rewrillen as

Blylin = B 4 Lixm Inxn (21)
By premultiplying the (24) by B, it Tollows |

Halyn = T 7+ BY Lo T (25)
Let’s premultifying the (25) by B, then we gel

BHylyxn = Bl T + BB Lin Inxn (26)

For equal (24) to (26}, the right term of (24) should be
salisfy that of (26) as [ollows

Bl = B, 1, (27)
BB* = LixmTmxn (28)

Thus, for satisfying mutual equal in (27) and (28), the

necessary condition is thal B is a form of (A1). =

1f matrix B is not a form of (A1) and the Pl controller
is designed by (8) and (9) in the syslem $pr1, then the

gains of PI controller should be transformated as

Hp=HpU* (29)
Hy=HU~ (30)
Appendix A

Proof of proposition 1 : Lel’s obtain the det(Gr(s))

shy— A+ B, —~(BHy = Lixm)
mxn Sl"l
=det(sly — A+ BIL) - det{ln + s Tuxn -
(sly — A4+ BH)) (Bl ~ Iixm)} (31

det(Gg(s))=det

and obtain the det(Gpr(s))

det(Gpy(s))=det(sl, — A + BIip) - det{l,
s LH(sl,— A+ BlIp)™' B} (32)

Substituting (8) and (9) into (32), then we have

det(Gpy(s))=det(s], — A+ BH,) - det{l, + BY (B,
— )5 Ien(sle — A+ BI1)' B)
=det(sl, — A+ BII.) cdet{In + 87 Yonxen -
(sly— A+ Bl BBH(BH,y — Ligm))
=det(sl, — A+ BH) -det{L, + 5 " Lpxn -
(sl — A+ BH)Y "(BHz = Txm))
=det(Gr(s)) (33)

The proof is completed. "

Appendix B

Proof of Propositon 2 : Let the translormation matrix T’

be

, T, 0 )
T = r:)‘(m a4
[ 0m xn ]2 ] ( )

where, Ty = (U*)™" and 17 = Hilosm.

Then
T 0
'[-(; - T—l = I 1'1>'<m .
E [ Omxn 12 ]
A= BH, —~(BHy— Liw) | [ 77" Onxm
Imx"- ‘ O’m ﬂmxn /1.2_1

TUA = BH)TTY =T BHy = Lixw)T7 ]

- -7‘2[771)(1)-7‘;‘l [)m
_[mAr T BHITY T By = T laxm 1T
»llllnxnllmxn'rl—l l-)m
[ A-BHur -B )
= ", 0, } = Gpr (35)
Because of (l}llz — Inxm)l,,,,(,,ﬁ 3 from (9)- ]
Appendix C
Proof of proposition 3 :
KXy =l X Ml - 1 (TX) ™ I
Tl WXl - EXT D - 0T
s - ” ! "a
<KX )TmalT]- (Fmin[ T (36)

In order to K (X) = K;(X.), it should be Omarl T}
(Tmin1])"F = 1. Thus opaHf] = TminlH ] = 1, because
of C7m|za:[Tl] = Umin[Tl] = 1. L)
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