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Abstract — In this paper, we will investi-
gate the position estimation problem for au-
tonomous mobile robots. Formulating this
as a state estimation problem for nonlinear
SISO systein, then we will apply several types
of nonlinear observers. Simulation results of
observer-based navigation control will be also
provided. ' ‘

1 Introduction

Recently, navigation problem for wobile robots at-
tracts great attention of control engincers because it
is practically important and theoretically interesting.
A mobile robot system is a typical example of néu-
holonomic system, and it is impossible to control its
postion by continnons static state feedback. There-
fore the path planning is essentially important, and
we have already proposed the path tracking controller
for multitrailer systems based on Lime scale trausfor-
mation and exact lincarization{1] .

These schemes require the inforations of all state
variables, i.c., the position and the orientation of the
robot. When we want to measure the whole states, we
need some kinds of robot visions like CCD caineras,
but they are too exaggerated for a tiny autonomous
mobile robot.

In this paper, we will suggest an antonomous vchi-
cle which has only two optical scusors such as PSD
(Position Scusitive Devices). Clearly this simplc mea-
sureinent system cannot acgnire the whole informa-
tion on the instant, but it will be shown that we can
dynamically estimate the state variables. Thus we can
compose the state observers for this system, and inject
the estimates into state feedback controller.

In Scction 2, kinematic model of the vehicle and
mesuring configration are prescnted, then Section 3
describes the state estimation problem and reduces
it to an SISO case. Obsecrvability will be verified in
Scction 4, and Scction 5 will introduce three types of
nonlincar observers applied to this problem. Numeri-
cal simulatious of state estimation and observer-based
nonlinear output feedback controller will be provided
in Section 6.

2 System Model

2.1 Kinematics of the Vehicle
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Fig.1: System Modecl

_The vehicle, which we consider in this paper, is a
tricycled automobile as shown in Fig.1. This is a two-
dimensional object, and & — y is the planar coordinate
frame. Configuration of the vehicle is determined by
the position (z,y) and orientation 6.

Notations:

P(z,y) : Center point of the rear axis
9 1 Absolute orientation of the body
z i Trajectory of PP

* oz : Translational velocity of P
L : Whecelbase (distance between P and Q)
« : Steering angle
Q : Center of the front wheel

wlere we assuine that
(1) the vehicle is driven by rear wheels and steered by
front wheel,
(2) there are no slide slips in any wheels.
(3) control inpnts are z and a.

The kinematic model of the vehicle is the following
differential cquations :

% = cosé (1-a)
b = sinf (1-b)
dz
df
i (1-c)

. e lan @
where = 7%,

2.2 Model of the Measurement System
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Fig.2: Mcasuring Configuration

Suppose a quite simple measurement system as
shown in Fig.2. Two landmarks are allocated on the
field — landmark A at (0,0), landmark B at (0,1),
where { is an unknown constant. The vehicle is as-
sunted to have some kind of optical sensors, so as to
measure the directions of eaclh towers ¢w4,9p. The
distances between the vehicle and cach towers r4,7p
are unknown.

The output vector (pa,¢p)T are described by the
following nonlincar function :

wa \ _ f — atank
( 3] ) - ( 0 — atan"/zll )

3 Problem Statement

3.1 Primary Problem

For autonomous navigation control, we have to cs-
timate x(t), y(t),#(t) from the sct of past outputs
{wa(r),ep(r)lr < t}. This is the dynaniic estima-
tion problem.

At first we derive a system representation. We take
the augmented state vector as (z,y,0,0)7,
assumed to be unknown. From (1), the state equation
is

since 1 is

z cosf 0

d 7 sin @ 0

zloe |7 o e O
l 0 0

Remark: Note that (3) does not contain the time ¢,
but the P’s trajectry z is used as a proxy of t. Since
z is one of the control inputs, we can countrol the time
scale of (3) in a sense. Thus (3) is recognized as a
single input system.

Our purposc here is to design the state observer(s)

for the system (2)(3) so as to cstimate the states of

the system dynamically.

3.2 Reduced Problem

In this subsection, we intend to simplify the problem
to the SISO casc which is much casicr to handle than

the primary one. The following procedure shows that
we can split the system into two SISO subsystems,
only by coordinate transformation.

First, we take the new coordinates (state vector)
consists of the output values o4 and @p, and the dis-
tances from cach landmarks r 4, rg.

€= (ra04,70,¢5)" (4)
where
M = \/l’i + i R utan’ﬁ:
TR = P24+ (py -0 , pop = 0- atzul-”JpILI

(%)

Then the state equation is translated into

TA COS P 0
d _ s Pa 1
Loea |2 I v (6)
dz D cospp 0

op . su:‘ngg 1 »

There are no interaction between (r4,94) and
(rp,y¢B), so we can split the system into a pair of
single-output system. Morcover, we need not to dis-
tinct these two systems because they are exactly sim-
ilac. Finally the problem is reduced to cstimate the

state of
vd T cos @ 0
w(e)=(58)+(1) o

where ¢ is directly measurable (i.e., output equation
is linear).

Ouce we obtain the estimates 74,7, our principal
purpose is acheived by this inverse transformation:

[ = \/Ti +7p — 2fpfpcos(pp — ¢a) (8-a)
2 = rArBsm(;pD—tpA) (8-b)
22 _noa _
g = tazTa’n cos(pp ~ ¢4) (8-0)
{
6 = wa+ atanl{— (8-d)
)

Remark: This result can be intuitively derived in
terms of surveying — the principle of triangulation.
When a sutfveyer wants to know the distance between
a pair of mountaintops, he will measure the direc-
tions to cach mountaintops at distinct two points. In
other words, he will determine ! from (pa,pp) and
(9’4, ¥'5), and incidentally z,y,60 are acquired. The
next section supports this fact systematically.

4 Observability

4.1 Definitions

The notion of nonlinear observability has been pro-
posed in various forms, while we are going to adopt
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locally weakly observability according to Hermann-
Kreuer{?].

We suppose the nonlinear system

&= flz)+gu (9-a)
y = I(z) (9-b)

where 2 €90 (state space; n-dimensional manifold),
J iR Rhg € RV and bt R — R are suffi-
ciently smooth mapping (Note that g is supposed to
be constant vector for stmiplicity). Let Lie derivative
of b by [ be also a mapping defined by

__0Oh

L h(z) := O—Tf('c)

Definition 4.1 (&-indistingushablity) Let U be a
subset of M and xg, xy €L If for every input (u(t).t €
{to,21]) whose trajectories (mo(t),t € [to,t1]) and
(z1(t)t € [to,t1]) lie in 8, y(xo(#)) = y(=1(t)),t €
[to, t1] is satisfice, then xg is called W-indistinguishable
from z;.

Definition 4.2 System (3) is called locally weakly
observable at xg if there exists an open neighborhood
W of my such that for every open neighborhood 0 of
zy contained in i, the only V-indistinguishable point
in 2 is xp.

We can easily verify this property by computing the
following observability rauk condition.

Theorem 4.3 (Observability Rank Condition)
Assume % = 0. Then system (3) is locally weakly
observable at x, if the following observability rank con-

dition:

a

a
dim span {EII(T)’ e 57[1?/1(7‘)} =n (10)

Is satisfied.

According to this theorem 4.3, system (7) is locally
weakly observable if

ot ( 0 1
ae sin COS
e _sore
or, cquivalently,
0<r<oo,0<|pl<m (12)

Rlemark: Then the observability of system (7) has
been verified, but remember that the z is a proxy of
time # in systen (7). This means that we can estimate
the state vector of system (7) as long as z increases
monotonously. ‘

5 Nonlinear Observer Design

The general form of nonlinear observers for system (3)
are described as follows:

() = F(3(1) + gu+ k(u(x) = W7 (13)

The terms f(&(2)) aud gu are employed to follow the
true system (9). k(-) is a function of the output error
(x) — h(&), which corrccts the current estimate (as-
sume that £(0) = 0). Noulinear observer design is to
find an appropriate function k(-), so that & :=z — &
converges to zero as ¢ — oo (corresponds to z — oo,
in our casc).

Now we will design three types of nonlincar ob-
servers for system (3).

5.1 Lyapunov’s Direct Method

This obscrver has the form

()= (B )+ (0 )srmer 0

Then the error system is

()= (e )-s00 o)

Suppose a candidate of Lyapunov function:

V(#) = =72 — €17 + €20°, €1,62 € Ry (16)
and then find an appropriate k(&) so that V/(2) will be
positive definite and d’—[zV(f) will be negalive definite.
Onc of such function is
- T 111
k(z)= ( 4(51;‘1”7
de1{ez—e])i?

(17)

5.2 Extended Kalman Filter

Neglecting higher order terms in taylor expansion of
(9) arround the current estimate #(t), we obtain the
approximatly lincarized systein

1z
% = f(#)+ Fi+gu (18-a)
a
y = hE)+Hz (18-b)
where F' = %l i yH= %L:T

The extended Kalman filter{3][4] is a kind of non-
stecady Kalman filter, proceeds by updating the esti-
mates of state vector and estimation error covariance
matrix I”, and by correcting P and the filter gain K
whenever a new outputs are given.

Updating process:

di

T F(E) + gu+ K (h(z) — h(F)
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!
%:FP+PFT+Q
(L

* Correcting process:
K=raT(Hrnt + p)t

P=(-KHP

where @, R are covariance matrix of states and output
disturbances. o

In onr case, the following are F g, H are substituted
into this procedure.

0 —sing 0
Fz(%’.’sf _cos, ),gf(1>,ff—(() 1)

®

5.3 Extended Luenberger Observer

A special class of nonlincar error systems are known
to be exactly linearized by coordinate transformation.
Although (7) does not satisfy the necessary condi-
tion for this lincarization, there is an approximate lin-
carization method proposed by Zeitz[5].

For an observable SISO system, there is the observ-
able canonical form derived by coordinate transforma-
tion x* = P(z). Then the error system in new coor-
dinates. or dynamics of £*, is lincarized by Ist-order
approximation, and the observer which estimates z*
is designed. By transforming this observer to the pri-
mary coordinate, we can obtain the observer which
estimates z (See [5] for detail). A

The extended Luenberger observer for system (7) is

) _ ( cos @ )
= _sill @
=
i Pp — sin @
sn@l’l 7 ° p
+ < s + 2cong ) @ (20)
=y
where the characteristic polynomial of the dyanmics

of T is 52 + p35 + py. In other words, we can specify
poles of the convergence.

|~
VaalnN
S

dz

6 Simulations

6.1 State Estimation

Fig.3 and Fig.4 are simulation results of state estima-
tion, under the following conditions:
Initial states :

(z,y,0,1) = (1.0[m]}, 2.0[m], —0.5[rad], 1.0[m])
Initial estimates :

(F4,7p) = (1.0[m], \/Zﬁ[171])

T — T T
2 ' :
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Fig.3: Estimation of z,y
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Fig.4: Estimation of 6,1

Steering angle is identically zero, so 8 is constant (the
vehicle moves starightforward). On the other hand,
observers’ configurations are

Lyapunov’s Direct Method :

€ =10x10"2,e,=20x10"% k=40
Extended Kalman Filter :

Q = diag(1.0 x 10,0.2), R = 1.0 x 10~
Extended Luenberger Observer :

p1 = 64, p; = 16(polesarc — 8,-8)

We can sce that every estimation crror converges suf-
ficiently fast.
6.2 Observer-based Control

Finally, we will show an example of observer-based
navigation control in Fig.5. The control law is the
following noulincar state feedback :
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Fig.5: Observer-based path following control (using
Extended Luenberger Observer)

u = cos® § {Fy(y — §) + Fytan 0} (21)

where I, I is feedback gain, and y = 7 is the refer-
cnce patl. (See [6] for detail).

Fig.5 is the result of observer-based path following
countrol. (In this case the vehicle moves backward, so z
decreases monotonously). Estimates by the extended
Luenberger observers are injected into the nonlinear
state feedback controller. '
Reference path : y = 1.5(mn]

State feedback gain : If = -4, = -4
(decided by pole assignment to —2, —2)
Initial state : .

(z,9,0,1) = (3.0}, 1.0pm], -0.8[rad], 1.0[mn])

Initial estimate :

(74, 71) = (1.0pn], v2.0[m))

And the configurations of extended Luenberger ob-
server are completely same as the previous example,
We can see thatb the stability of observer-based feed-
back coutrol system is conserved in this case, and the
vehicle follows the reference path autonomously.

7 Conclusions

In this paper, we formulated the state cstumation
problem for autonomous mobile robots, and cleared
systematically that nonlinear observers are applicable.
Moreover, observer-hased output feedback control was
acheived and verified by numerical simulations. We
found that the extended Luenberger observer is es-
pecially useful for outpnt feedback control because we
can decide the convergence rate of estimation by spec-
ifying the poles of the errov system.
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