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Abstract

In this paper, we propose a new design approach of a two-degrees-of-freedom compensator which assures the robust
stability. First of all, we clarify the internal structure of the generalized two-degrees-of-freedom compensator. By adopting
this structure, we can make a bridge between the generalized controller and the disturbance observer based controller.
Secondly, based on the clarified structure we derive a robust stability condilion, and propose a design algorithm of free
parameter taking the condition into account. The proposed design algorithm is easy to implement and, as a result,
we obtain lower order free parameter then that of the conventional design algorithm. Thirdly, we show by adopiing
an appropriale coprime factorization that the clarified structure can also be regarded as an extended version of the
conventional PID compensator. Finally, we apply the proposed algorithm to a three-degrees-of freedom direct drive robot,
and show some ezperimental resulls to verify the effectiveness of the proposed algorithm.

1 Introduction

To achieve high performance control of a robotic manipu-
lator, we have to take into account disturbances added on
each joint and nonlinear forces such as a frictional force,
a gravity, and an interacting force. To meet these ends,
lots of control strategies were proposed in the past such
as the computed torque technique[l}, the nonlinear de-
coupled feedback control[2], and the resolved-acceleration
control(3]. These control methods need computations of
the inverse dynamics and require much computational ef-
fort, therefore they are week uncertain deviations. On
the other hand, new method based on the disturbance
observer([4],[5] was proposed which is characterized by the
facts that it does not need the inverse dynamics calcula-
tion and that it can be implemented with a simple micro-
processor. However, this method depends on the intuitive
approach in determining the disturbance estimation fil-
ter, and more systematic approach is desired. In recent
years, the stabilizing compensators for a given plant has
been derived based on the coprime factorization technique,
which leads to the well-known Youla’s parametrization of
the controller[6]. Sugie et al.[7] extended the work to the
two-degrees-of-freedom compensator and gave a very clear
parametrization of the generalized two-degrees-of-freedom
compensator. In spite of these theoretical results, the gen-
eralized compensators have not yet been used in industries.
This is partly because the engineers are not familiar with
the structure of the controllers which differs from those
of the conventional and heuristic ones stated earlier. In

this paper, we propose a new design approach of a two-
degrees-of-freedom compensator which assures the robust
stability. First of all, we clarify the internal structure of
the generalized two-degrees-of-freedom compensator. By
adopting this structure, we can make a bridge between
the generalized compensator and the disturbance observer
based controller. Secondly, based on the clarified struc-
ture, we derive a robust stability condition, and propose a
design algorithm of a free parameter taking into account
the condition. The proposed design algorithm is easy to
implement and, as a result, we obtain lower order free pa-
rameter then that of the conventional design algorithm.
Thirdly, we show by adopting an appropriate coprime fac-
torization that the clarified structure can also be regarded
as an extended version of the conventional PID compen-
sator.

Finally, we apply the proposed algorithm to a three-
degrees-of-freedom direct drive robot, and show some ex-
perimental results to verify the effectiveness of the pro-
posed algorithm.

2 Internal structure of 2-DOF
compensator

In this section, we make a brief review of the results of the
parametrization of the two-degrees-ol-freedom compen-
sators. The block diagram of the two-degrees-of-freedom
compensator is generally as shown in Fig.1. P, r,u,d, andq
represent the control plant and a command input, a con-
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Figure 1: Internal structure of 2-DOF control system 1.

trol input, an external disturbance, and a detected out-
pnt(angle of joint), respectively. According to the results
of Sugie et al., the parameter C, can be given as

P = ND! (1)
C; = (Y-QN)(X+QD). (2

Here, X, Y represent a particular solution that satisfies
the following the Bezout Identity;

XN+YD=U, (3)

where @ is a free parameter of the two-degrees-of-freedom
compensator. U represents a unimodular transfer func-
tion, and N, D, X,Y € RH,,.

The role of C; is to suppress the plant deviation or
the external disturbance. Recalling that C; is parame-
terized also by.the free parameter @, in the one-degree-
of-freedom system, it is interpreted that the parameter Q
suppresses the effects of the plant deviation. In Fig.1, a
designer of the controller can handle the parameter K and
Q(K, Q € RH,,). K and @ determine the tracking per-
formance and the feedback response, i.e. the robustness
of the system, respectively. All stabilizing compensators
for a given plant is derived based on the coprime factor-
ization technique, and can be represented as equation (2)
by using one free parameter (). By using the expressions
(1),(2),(3), the equivalent block diagram of Fig.1 is given
by Fig.2[8]. Fig.2 reveals that the compensator is com-
posed of 3 sub-controllers:

[1} Feedforward controller UK : This part of the con-
troller assumes that the nominal plant is exact, and
feeds forward the reference input to achieve the de-
sired model.

v

Feedback controller Y~1X : This part is needed to
stabilize the unstable plant, but can be omitted if the
plant is stable. If the plant is exact, y = NKr due to
the feedforward path, and no signal is passed through
this part.

Disturbance observer : The disturbance is estimated
and is fed back through Y~'Q. Therefore, Q(s) de-
termines tlie robustness of the system. It should be
noted that the stability is preserved even with time-
varying stable Q(s), which means that adaptation can
be applied to Q(s).

3

Figure 2: Internal structure of 2-DOF control system II.

3 Identification of plant devia-
tion and robust stability con-
dition

In this section, we clarify how to identify the plant devia-
tion based on the internal signals of 2-DOF compensator
described above and propose a design method of the free
parameter Q which assures the robust stability. Here, the
plant uncertainty is expressed as the additive perturba-
tions to the factors in a coprime factorization of the plant
[10]. Here, we sate the several assumptions;

1. The nominal plant P js stabilized by a controller C(s)
parameterized by Q. -

2. The perturbed plant P is stabilized by the nominal
controller Cy(s).

Co(s) is obtained by setting @ = 0 in C(s) and is expressed
as
Co(s) = Y 1X. (4)

Next, from the assumption 2, P can be expressed as
P=(N+RY)D-RX)'=ND", (5)

for some R € RH,, which represents the plant deviation
[9]. In this case, R can be rewritten as

R=(P—-P)DD™'U! (6)

where N, D, X, Y satisfy the expression (1) and the Bezout
Identity (3). Note that U is a unimodular transfer func-
tion. We see that R is actually an additive perturbation
weighted by the frequency response of the plant.

By substituting P for P in Fig. 2, we obtain a very
simple block diagram of Fig.3, which clearly indicates how
to identify the plant deviation R using the internal signal ¢
and f of the two-degrees-of-freedom compensator (in case

of SISO, URU~! = R).
g
£

Also, the robust stability condition in Q can be obtained
by applying small gain theorem to Fig.3 and is given by

I RQ llo< 1, (9)

Dg— Nu (7
Yu+ Xq (8)

I
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Figure 3: Internal structure of 2-DOF control system III.

where || || represents the H,, norm and defined by
G lloo= sup |G(jw)|- (10)

The condition given by equation (9) is the sufficient condi-
tion for robust stability that must be satisfied by the free
parameter Q(i.e, the disturbance estimation filter). The
condition quantitatively clarifies the well-known fact that
the cut-off frequency of the disturbance observer cannot
be chosen at high frequency.

This stability condition has been often neglected in the
design of the disturbance observer by assuming that the
‘disturbance is totally created by an external source, which
is not true in the case of the parameter uncertainties.

4 Design algorithm of free pa-
rameter Q

From the discussion of the previous section, the plant devi-
ation can be identified using the internal signal £, 8. In this
section, we show the design strategy of Q(s) for SISO sys-
tem, which assures the robust stability condition of equa-
tion (9) and minimizes the sensitivity function. In general,
the sensitivity function is given by S = (Y ~-NQ)U ! D us-
ing the coprime factorization. This conditional optimiza-
tion problem can be formulated (8] as follows,

- -1
min lv - noyu—p], (11)
subject to || RQ {|0< 1, (12)
where || - ||z represents the following expression,
16 = [ [ 1 ) P ]’ (13
= 21 J-wo i ’

The design approach [8] needs mush computational ef-
fort and results in a higher order free parameter. On the
other hand, if the deviation R is quite small, we may well
neglect the robust stability condition, and design a free pa-
rameter from a point of sensitivity minimization. In fact,
as shown in the following section, even in case of the direct
drive robot, plant deviation R is small.

Next, we consider a method of the sensitivity minimiza-
tion. In general, @ should be calculated by solving the

Kt S J'_
N PRI M Y

ral
Kl

Figure 4: Control system of each Joint.

Nehari problem. However, in this paper we propose a new
simple design algorithm of free parameter Q.
(1) Identify the plant deviation R.
(2) Design the free parameter (.
(2a) Calculate Quins = YN™L
(2b) Check the robust stability condition.
If it is satisfied, then Qou = Qmins and go to (2d).
If it is not satisfied, then go to (2c).
{2c) Lower the gain of Qumias, so that it satisfies
the robust stability condition(]] RQuuins {leo< 1)
(2d) Determine a low-pass filter Qfi., to
cut down the high frequency gain.
(26) Calculate Q = Qvthfilu‘w-

In step (2d), @, is multiplied by a low pass filter, be-
cause precision of the identified R is degraded remarkably
for high frequency band.

5 Control system and experi-
mental results

5.1 Coprime factorization

In this section, we adopt a new coprime factorization which
can be regarded as the extended version of the the con-
ventional PID controller. In case of the independent joint
control, by regarding the torque current as an input and
the joint angle as an output, we get the following transfer
function as a nominal plant.

K,

p=_1t
(Js+ D)s

(14)
where K, is a torque constant, J is a inertia moment, and
D is a damping coeflicient.

In this paper, based on the two-degrees-of-freedom com-
pensator described in the early section, we adopt the fol-
lowing coprime factorization which clearly shows itself as
an extended version of the conventional PID compen-
sator.

_ K, D= s X =
(Js+D)(rs+ 1) Ts+1’ ’

-1
(’PID

Il

5(1 + 748) 15
K82 4 (14 748) s + (1 + mus)IG (15)
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Here, N, D, X,Y € RH,, and equation (15) satisfies equa-
tion (3). And K, K, K;, 74 are the gains of the PID com-

. pensator. With this coprime factorization, the overall sys-
tem block diagram for each joint is given by Fig.4 in which
select the free parafeter K = U~!. Note that the trans-
fer function from 7 to q is given by NU™!, therefore, the
tracking performance can be specified by a adjusting PID
parameters. Consequently, by using this coprime factor-
ization, we can easily extend the conventional PID con-
troller with some additional elements and get much better
performances.

Figure 5: 3-degrees-of-freedom direct drive robot.

Table 1: Specifications of direct drive robot.

Joint number 1 2 3
Rated power (W] 410 250
Maximum torque [Nm] 100 30
Maximum speed [rps] 1.2 2.4
Resolution of encoder [p/rev] | 1024000 655360
Link length [em] 40 225 24

5.2 Experimental setup

We applied the proposed compensator to the trajectory
control of a three-degrees-of-freedom direct drive manipu-
lator, shown in Fig. 5. Table 1. shows the specifications

DD manipulator

Dri Joint

DSP 170 [ Driver =i Joint
Joint 8
Encoder

Figure 6: Schematic diagram of experimental system.

:_‘:I Driver [~

of the manipulator, and Fig.6 shows the experimental sys-
tem setup. Each joint was driven independently by the
control system of Fig.4. Only joint 2 and 3 were used. We
used 80386 and DSP(Digital Signal Processor NEC—u PD
77230) as the control units which generates the control sig-
nal and the identification signal and send it to each joint
driver through D/A. A sampling period was 400[usec].
The joint 2 and 3 more simultaneously. This results in
the gravitational and the interactional disturbing forces.
To identify R, we set @ = 0 in Fig.4 and measured 12500
pairs of (£ , §) signal.

5.3 Experimental results

In the following, we present the éxperimental procedures
and results in detail. At first, we attempted the following
test to show the effectiveness of the proposed control sys-
tem. Firstly, we tuned the PID gains so that if realize the
desired tracking performance specification.. Each parame-
ter is given by K, = 0.144, K, = 0.632, K; = 0. Secondly,
to identify R, we let @ = 0 and input & = 1[rad](step
signal). Fig.7 shows the identification result. Next, we
calculated Qins as step (2a) and get simple Quins =
2.500 x 107!(see Fig.7). As shown in Fig.7, || RQumins ||
satisfies the robust stability condition so that we multiply
Qmins DY Qfiner 1o get the final Q(step(2d)). Here, we
selected 100[H 2] as the cut-off frequency of Qgine- and the
obtained @ is given as follows;

Qs) = 2.500 x 10~1
~ 1.000 x 10~2s + 1.000
10° i b IR B AL | il A
S
£ i
O 10%
i — R
E- ===+ Qmins ~
r —— RQmins \\ ]
10°4p T
FETITY IR EETUPRTTTY RPIFETIYY BT e R
1072 10° 10° 10
Frequency [ rad/sec ]
Flg 7. Gain plOt Of R,Q,,,_,‘,,,s,RQm,’ns

(In case of || RQins |e< 1)

We compared the performance of proposed compensator
using the above @ with that of the conventional PID con-
troller. In particular, we tested their step responses and
responses to a stepwise disturbance. Fig.8 and Fig.9 show
the results. The PID gains were for the conventional con-
troller K, = 0.18, K, = 0.76,I; = 0.1, and the values
were chosen so that almost saine command tracking per-
formances can be obtained in both the PID and the pro-
posed compensator.

— 425 —



Ll v L]
_ —— 2do!
®
£ ----PID .
=
k] ’
2 |
O
o
" L L 1
3 4 5

Time [sec]

Figure 8: Response for stepnose command of joint 3 L.
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Figure 9: Response for stepnose disturbance command of
joint 3.

We see in Fig.8 that the command response of controller
using PID ounly(dashed-line) and using two-degrees-of-
freedom (solid-line) does not make a noticeable difference.
In Fig.9, however, we show the responses to stepwise dis-
turbance(that is, we set the tracking command to 0[rad]
and added a step signal as disturbance) and could see that
two-degrees-of-freedom compensator(solid-line) showes a
far better disturbance rejection response (see Fig.9). Con-
sequently, we see that two-degrees-of-freedom compen-
sator guarantees not only the command tracking perfor-
mance but also desirable disturbance rejection properly.

Next, to verify the validity of the robust stability con-
dition (9), we performed the following test. Firstly we
redesign the PID compensator, so that the deviation R
become larger(/(, = 0.0338, K, = 0.3016, K; = 0). Fig.11
shows the identified deviation R. And then, as a second
step, we get Quins from Y N7* and obtain the Q by mul-
tlply]l’lg Qim’ns by inuer

In this case, the step response was unstable, because the
robust stability condition || RQumins ||c< 1 was violated.
So a natural remedy to provide the stable response was as
given in step (2c) in section 4, to lower the gain of Qs
so that robust stability condition || RQmins |le< 1 could
be satisfied. After redesigning Qmins and multiplying it
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r 3
'% 100_—::-_:-_:-_-.:-_::::.::"" ----------------------- -!
o r 7
107 — R 1
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Figure 10.  Gain plot of R,Qumins,AQmins
(In case of || RQuins lc> 1)
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Figure 11: Response for stepwise disturbance command of
Fig.10 I1.

by Qjitter, We obtained the following

Qss) = 3.575 x 107%s + 1.508 x 107}
N5/ T 1693 x 10252 + 3.531 x 10-15 + 3.016 x 10-1’

In this case, Qins satisfies the condition | RQ |leo<
1(Fig.13) and provides a stable, step response as shown
in Fig.13

6 Conclusions

In this paper, firstly we have clarified the internal struc-
ture of the generalized two-degrees-of-freedom compen-
sator and proposed a new coprime factorization which can
explicitly be regarded as the extended version of the con-
ventional PID compensator. Secondly, we show the sim-
ple design algorithm for @ which mainly focused on the
sensitivity minimization. By using the proposed method,
we conld make up a two-degrees-of-freedomn compensator
which satisfies the robust stability, command tracking and
disturbance rejection characteristics simple by extending
the conventional PID controller,

Finally, we verified the effectiveness of the proposed
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Figure 13: Response for stepwise disturbance command of
Fig.12. 11l

method by the experiments using the direct drive manip-
ulator.

References

{1} R.P.Paul: Robot Manipulators:Mathematics, Program-
ing, and Control, the MIT Press, (1981)

2

F.Freund: ”Fast Nonlinear Control with Arbitrary Pole-
Placement for Industrial Robots and Manipulators”, Int.
J. Robot Res., vol 1-1, pp.65-78, (1982)

3

J.Y.S.Luh, M.W.Walker & R.P.Paul: "Resolved-
Acceleration Control of Mechanical Manipulators”, IEEE
Trans. Automatic Control, AC 25, No.3, pp.468-474,
(1980)

[4

M.Nakao, K.Ohnish & K.Miyachi: ”A Robust Decentral-
ized Joint Control Based on Interference Estimation”,in
Proc. IEEE Int, Conf. Robotics and Automation, pp.326-
331,(1987)

5

S.Komada,T.Murakami & K.Obnishi: "Force feedback
control of multi-degrees-of-freedom robot based on accel-
eration”, T.IEE vol109-D, pp325-332, (1989)

— 427 —

D.C.Youla et al.: "Modern Wiener-Hopf Design of Op-
timal Controller”, Part ILIEEE Trans. on AC,vol AC-
21,pp.319-338,(1976)

T. Sugie, T. Yoshikawa: "Basic structure of two-degree-
of-freedom control systems with its application to servo
problem, Trans. SICE,vol22,pp.156-161,(1986)

K.Matsumoto, T.Suzuki et al: ”Internal structure of
two-degree-of-freedom coutroller and a design method for
free parameter of compensator”, T.IEE vol 113-D, No.6,
pp.769-777,(1993)

T.T.Tay et al.: "Indirect adaptive techniques for fixed
controller performance enhancement”,Int. J. Control , vol
50, No.5, pp.1941-1951,(1989)

K.Glover and D.Mcfarlane: "Robust stabilization of
nominalized coprime factor plant descriptions with Ho-
bounded uncertainty” IEEE Trans. Automatic Control,
AC-34-8, pp.821-830,(1989)

M.Vidyasagar: Control  System  Synthesis, MIT
Press,(1985)



