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Abstract - Rccently ncural  networks  have  been
proposcd as ncw computational tools for solving
constraincd  optimization  problems  because  of its
computational power. In this paper, the shortest path
finding algorithm is proposcd by using a Hopficld type
ncural nctwork. In order to design a Hopficld type
ncural network, an encrgy function must be defined at
first. To obtain this cnergy function, the concept of a
vector-represented network is introduced to describe the
connected path. Through computer simulations, it will
be shown that the proposcd algorithm works very. well
in many cascs. The local minima problem of a

Hopficld type ncural nctwork is discussed.
I. INTRODUCTION

Gencerally, to find the shortest path on the network
model is involved in many problems as subproblem.
For this rcason the shortest path finding problem has
been the subject of intensive rescarch for many ycars.
According to these cfforts, many algorithms havce been
proposed, for example, Dijkstra’s algorithm and so on
[1]). However, these algorithms have the shortcomings
that the computational burden is getting larger as the
number of nodes increascs on the nctwork model.
Recently neural networks have been proposed as new
computational tools for solving constrained optimization
problems. Since the shortest path finding problem can
be regarded as a constrained optimization problem, we
proposc thc shortest path finding algorithm using a
Hopficld type ncural network in this paper. To design
a Hopficld type ncural nectwork, an appropriate cnergy
function must be dcfincd at first so that the shortest

path can be decoded from the final state of the ncural
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network. To obtain this cnergy function, we assumc
that the nctwork modcl is given in the form of vectors
between the nodes without loss of gencrality. Using
this vector-represented network modcl, the constraints

for the shortest path is presented in this paper. After

finding the dynamic equation of cach ncuron based on
the gradient descent mcthod, the electrical circuit can
be implemented by using the obtained paramcters as
shown in Fig. L. In this papecr, through the numerical
analysis, it will bc shown that the proposcd algorithm
can solve the shortest path problems.

Generally, a Hopficld type ncural nctwork has the
local minima problem because the dynamics of cach
neuron is obtained, based on the gradicnt descent
mcthod. In order to overcome these shortcomings, a
surfacc of the c¢nergy function must be  designed
gracefully by proper tuning the weighted cocfficients of
the energy function. This tuning schemce has been
proposed by Mustafa K. Mehnct Ali and Faouzi
Kamoun. This will be discussed in this paper [2].

This paper is organized as follows:

The next scction gives a brief revicw of the
application of a Hopficld type ncural nctwork to solve
discrete combinatorial optimization problems. In scction
HI, a mncural nctwork architecture bascd on  the
Hopficld model is proposcd for solving the shortest
path finding problem. The main sieps involved in the
design of the proposcd model are described, In scction
IV, it will be shown that thc proposed modcl works
well in many cascs, through computer simulations.

Finally we draw somc conclusions in scction V.

1. HOPFIELD TYPE NEURAL NETWORK
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The usc of neural uetworks to solve constrained
optimization problems was initiated by Hopficld and
Tank [3]. A Hopfteld type ncural nctwork has been
applied to solve discrete combinatorial optimization
problems, (for cxample, the Traveling Salesman
Problem (TSP)) because of its computational power. A
Hopficld type ncural nctwork can be implemented by
the clectrical circuit as shown in Fig. 1. This circuit is
bascd on the model of a biological ncural network.
Each ncuron is modeled as a  nonlincar device
(opcrational amplificr) with a  saturated monotonic
increasing function relating the output V; of the i th
ncuron to its input U; . The cxample of a typical
characteristic function of the nonlincar device is as
follows:

Vv:gi(Ui):ﬁ m
+e

Using the above cquation, the outpwt V; is allowed
to take on any valuc between 0 and 1. The synaptic
comncctions  between  ncurons  arc  represented  as
resistive  components  which can be  fully  described
through  the matrix T=[7i], also known as (thc
conncction matrix of the nctwork, As shown in Fig. 1,
cach ncuron is biased by an cxternal current %, which
could represent actual data provided by user to the
ncural network. The dynamics of a Hopficld typc

neural network is described as follows:
du; U, N
T T, m eVl )
where T, is the circuit’s time constant.
Hopfield [3] has shown that if the conncction
matrix T is symmetric and the gains of the nonlincar

devices arc sufficiently high (i.c. hi— ) then the

dynamics of the ncurons moves to the stable state in
thc gradient descent direction of the quadratic cnergy
function (3).
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Hopfield [3] has also shown that if the state of the
space over which the circuit operates is the interior of
the N-dimensional hypercube defined by Vi = 0 or |

»

i.e. when L;=co, and the diagonal clements 75 arc 0,

then the stable states of the nctwork correspond  to
those locations in the discrete space consisting of the
N . . e

2" comers of this hypercube which minimize £ 3). In

terms  of the  generalized  energy  function the

’

dynamics of the i th ncuron is described as follows:

dUi Ui arr
—_— = 4
dt Ti a Vi ( )
Thercfore, to apply a Hopficld typc ncural network
to the shortest finding problem the cnergy function is

required.

HI. THE SHORTEST PATH
FINDING ALGORITHM

nctwork  model  can  be

G=(N, A), with N

The vccior—rcprcscntcd
defined as a dirccted graph

nodes and [ arcs. Corresponding to each arc (i, j) there
is a nonncgative number C; which represents the cost
value (length, transit time, ctc.) from node i to node j
We assign the number to cach wode from 0 to N-J.
Especially a source and a destination arc assigned 0

ON-1

and N-I respectively. Let a dirgeted path P be an

ordered sequence of nodes connceting 0 to N-1 [2].
P20, 0, jioy k, N-T) )
Then the total cost of this path will be equal to
CoitCij+
found among all possible dirccted paths.

+ Cina. Hence, the shortest path can be

To formulate the shortest path finding problem in
Hopficld

appropriate cnergy function must be defined at first.

terms  of a typc ncural mnctwork, an
To achicve this, thc proposcd Hopficld type ncural
network is organized in N(N-1)/2 neurons. Each neuron
is describcd by double indices (i, ), where the
subscript i and j denotc node numbers. A neuron
which represents (i, j) is characterized by its output
Vi, and is defincd as follows:
L if the arc fom node i (o node
Vij= Jis in the minimum-cost path — (6)
0 otherwise
To eliminate all noncxistent arcs from the solution

the following paramcter is introduced.

1 if the arc fom node i (o node
pij= J does not exist @)
0 otherwise
To cxpress the connccting condition for the shortest
path, which mcans the feasible path must be perfectly
connccted through the nodes, the following assumption
is required.

Assumption 1

A directed graph G=(N, A) is represented as  the

form of vectors between nodes.: the network model s

— 435 —



given in the form of the vector- represented network.

Since cach mnode of a dirccted graph has the
coordinate for X-Y planc, thc vector between the
nodes can be casily obtaincd. Let (x, y) be the
coordinate of nodc i, then thc vector between node i
and node j is defined as follows:

(xjv)-(xi,yi). if the arc fom node
. [ Lo node j exisls (8)
0 otherwise

dij=

To describe the  vector-represented  network,  the
dircctional factor aj; is also defined as follows:
1. if there is a vector

aij= from node [ Lo node j )]
-1 otherwise

—
Using the vector  @idi;, a  vector-represented

network can be described easily as shown in Fig. 2.
The connecting condition is represented  as  the
following cquation wusing the parameters  defined in
cquation (8), (9).

N-} N-1

_—  —

aidiiVii= don-1 (10)

™

=0 j=r+1
Equation (10) is not “if and only if” condition for
representing  the connected path from a source to a
destination becausc the vector  dj; is not unique. To

obtain  “if and only if" condition, the following

function is introduced.

-1 N-)
Fli)= 2 Vi+ 2, Vi (1n
k=0 k=1+1

The value of the function [({) mcans thc total

sum of the connccted paths at node i when the
dynamics of neurons recaches the stable statc. If the
following equation is satisficd, then the comnected path
between a source and a  destination is generated.
FDF(HVii=2 if node i is a
source or node |
is a destination
otherwise

(12)
F(DF(NVii=4

where (4, ) & [0, N-1V/i<j
The example of cquation (12) is depicted in Fig. 3.
Since a source node and a destination’ node must have

the only onc connccted path respectively, the following

condition is also nceded in addition to cquation (12).

at a source node (13

N-2

Vin-1=1  at a destination (14

=0

Thercfore, according to cquation (10), (12), (13),

(14) the encrgy function can be formulated as follows:

(i) If nodec i is ‘thc starting point or node j is the
destination

: N-1 -
GViriy Z Pu‘/ i

i=0 f=1+] =0 j=i+1

i
9

E
sl aydiV i~ dony I
FUOF(HV-2)° (i5)
1)% + 1 Z\ inoi = 1)*

+iy 2, 20 Vi(l=-Vip

1=0 j=i+]

(ii) othcrwise

N-1 N-1 N-) N-]

L= CiVi+1a Z 2V

=0 j=i+ l =0 j=1+1

+“3” Z udllvu d(h\’ l”

() =+l

il 24 ;11 (DF(HVi=4)* (16)
N- j N-2

+is( 2 V( 1)2+11[;(=Z”V,~-1~1)2
N—l N-1 '

g, Z vlj 1—‘/11)

=0 A

where || - || is the Euclidcan nonm.

In equation (15) and (16) the |y term minimizes the
total cost of a path by taking into account the cost of
existing arcs. Thc |3 tecrm  prevents noncxistent arcs
from being included in the chosen path. The 1, Ws, s,
and U terms arc zero if the shortest path is connected
from a source nodc and a destination through nodes.
The |17 term pushes the state of a Hopficld type ncural
network to converge to one of the 2"
the hypercube, defined by Vij e [0, 1] {2).

Using cquation (1) and (4) the dynamics of a

corners of

Hopfield typc ncural nctwork can be obtained as
follows:

—_1_

J+e Mt an
Vi, pelo, N-11/i<y

=it Ui) =

(i) If node i is a sourcc or nodc jis a  destination

duUiy, — -Ujy ~ =
r7E - fu.c.-,--u;zn,',»-ZU:;{(;})
N-1
Zl U(‘l_\v,‘j‘/vf, ll\ﬂ\—l) ud\u (
',:0-
N-1 NI

,Z] diidvijV ij~ dvon-1) dijd yij}
e
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N-1 N-

- 2u4( Z Zl YF(HV = 2){
1(;)+1«<,)v,,+1~(,>v,,)

M ( ZVW 1)80i-2u6( va'
_1)6_/‘\'— ul(l 2V:/)

(i, p e [0, N-1Vi<j
(18

(ii) otherwise
N-1

d ij [}
'_C{UEL = _—[LL_HICU g LD i 2“’}{(',=ZU

_Z iV i~ dyon-1) tijd ij+ (
{V-l N-1
Z(:) Zaudvuvu deN l) ijdw'j)
i j=1+

N N-1

- 214( Z Z FDF(HV -

F( 1)1' J)+f(l)i/,,+r(l)K’.,} 2

Is( ZV(U 1) 80~ 2u6( ZVvN !
1)5,N~1 e (1-2V3)

(, pe [0, N-1Vi<j
(19)

where E: is equal to (dj, dyij) and thc function
9i; is dcfined as follows:

] if i=j

5= .
Y710 otherwise

(20)
Using cquation (18) and (19) the conncction matrix
and the bias current can be obtained. The shortest path
corresponds to the minimal statc of the cnergy function
which is defined in cquation (15) and (16). Generally,
a Hopficld type ncural network has the local minima
problem because the dynamics of ncurons is based on
the gradient descent mcthod. To solve this local
minima problem the cnergy surface is  designed
graccfully by proper wming of the y.’s weighting
cocfficients. In order to cnsurc that the encrgy function
has only onc Jow point and hence provides a graceful
descent along the cnergy surface, the following
cquation is required {2].
2~
~—(‘§—V1f7j>o LA e2))
Using cquation (21) the ,’s weighting cocfficicnts
can bc obtained. The simulation results for  the
proposcd algorithm  will be  presented in  the next
scction.

IV, SIMULATION

To show the cffcectivencss of the  proposed
algorithm, the vector-represented nctwork shown in Fig.

4 is used. Let the cost valuc Ci; be the distance

.
between node i and node j ie. |did; ] where the

coordinates of nodes arc given in Table II. Then we
can casily find the fact that a dirccted path P"=(0, 2,
4) is the shortest path. To obtain thc paramcters for a
Hopficld type ncural nctwork, the coefficients of the
encrgy function is chosen as shown in Table 1. In
equation (17), in order to allow thc dynamics of
ncurons to wander freely in their state space, the value
of X is choscn as 1 and for simplicity it is assumcd
that gi=g, all indcpendent of the subscript (i, ).
Originally, a Hopficld typc ncural nctwork s
implemented by the clectrical circuit in the form of
Fig. 1. However, as a matter of convenience the ime
evolution of the statc of neurons can be simulated by
numcrically  solving cquation .(18) and (19). This
corresponds to solving a system of N(N-1)/2 nonlincar
differential  equations, where the variables arc  the

ncuron’s  output  voltages  Vis.  Accordingly, the

simulation consists of obscrving and updating the
neuron's output voltages at incremental time steps 8¢,

where 8¢ is 0.01 ms in this paper. In addition, the
time constant T of cach neuron is sct to | without any
loss of gencrality in cquation (18) and (19). The initial
value of Ui is assigned between O and 1 randomly.
The simulation result for Fig. 4 is illustrated in Table
HL In Table I, the values of 0, I, -, 4 in rows
mean the number of node i and the valucs in colwnns
mean the namber of node j similarly.

As compared with Fig. 4, the vector- represented
nctwork shown in Fig. 5 has a different configuration;
a directed path P™=(0, 1, 4) is thc shortest path,

where the coordinates of nodes are  identical with the

case in Fig. 4 and the cost valuc (0 is the distance

between node @ and node j The simulation result for
Fig. 5 is shown in Table IV, using the above
parameters.

These  results  show  that the proposed  algorithm
operates well. When the number of nodes becomes

larger, the shortest path can be obtained through the

proper tuning of the weight cocfficicnt 1.

V. CONCLUSION

The shortest  path  finding  algorithm  on - the
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vector-represented  network  was  proposed,  using  a
Hopfield type ncural nctwork. To design a Hopficld
typc ncural nctwork, the cncrgy function, which
represents  the  condition  for the shortest  path, was
defined. Using this energy function, the paramcters for
a Hopfield type ncural nctwork could be  obtained.
Through the simulation, the cffcctivencss  of the
proposcd algorithin was presented. The local minima
problem for a Hopfield type ncural nctwork was
discussed. It was shown that the proposcd algorithin
could bc‘applicd to many cascs by proper tuning the

cocfficients of the cnergy function,
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Table. 1. Cocfficients of encrgy function

18 U2 U3 [t s te [t

800 {2000 | 5000 | 4000 | 4000 | 4000 | 500

Table. 1I. Coordinatcs of nodcs

0 1 . 2 3 4

(1, 6) | (4, 10)| (6, 4) |10, 1O)| (13, 7)

Table. III. Result for Fig. 4

0 1 2 3 4
0 X 0 0 |05 04
1 X X 0 0 0
2 X X X 0 0 i
3 X X X X 0
4 X X X X X:J
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(Initial Condition)

(Iterations = 3000)

0 ! 2 3 4
0 X 1 0 0
1 X X 0 0 0
2 X X LX 0 1
3 X | X | XX 0
4 X X X X X

(Ttcrations = 1000)

0 ! 2 3 4
0 X 0 l 0 0
1 X | X 0 0 0
2 X | X | X 0 1
3 X | X | X | X 0
4 X | X | X | XX

(Iterations = 2000)

0 1 2 3 4
0 X 0 1 0 0
1 X I X 0 0 0
2 X | X | X 0 1
3 X | X1 XX 0
4 X | X | XX {X

— S B

Table. IV. Result for Fig. 5

0 1 | 2 3‘“ 4
0 X 0 105|105 |04
i X .—Xw 0.1 (; WW“(; -
2 X X X (; ﬂ 0
3 X X X X i
s x| xIx x| x

(Initial Condition)




ol 1]2]3]e
0 X*l091}1 0 0 |01
h_l X X 0 |08 1
2 [ X | X|x]o0lo1
3 X X X X 0
4 X X X X T
(Iterations = 1000)
o1 ]2]a]e]
0 X 7 09 0 0 ‘;
_17 X X 0 |01 1
2 X X X 0 0
3 X X X X 0
L4 X | x| x| x|x
(Iterations = 2000)
0 1 2 3 4
0 X 1 0 0 0
i X X 0 0 i ﬂ
2 X‘ X X 0 0
S (<% o
4 X X X X Xi
(Iterations = 3000)

Fig. 1. Hopficld type ncural nctwork circuit
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Fig. 2. Vector-represented nctwork
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Fig. 3. When F(OF()Vi=4

))

(0, 0) x

Fig. 4. Vector-represented network (0-2-4)
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Fig. 5. Vector-represented network (0-1-4)



