'94 KACC (1994. 10. 7 ~ 20)

% ., Control of Contact Position and Force of a Manipulator

O
Sangmoo Lee *

Harold Yae**

*QOcean Enginecring Department, KIMM, Korea

**Mechanical Engincering Dep't, The University of Iowa, USA

ABSTRACT

An application of 3, synthesis to contact control of a
manipulator is suggested. Based on computed torque
lincarization of a manipulator, a target dynamics for
contact motion control is defined and used as a reference
modecl. The target dynamics relates position and force
crrors through {ree motion impedance and force error
compensators. The ¥, control synthesis is adopted to
find an optimum the compensator for position and force
control in various directions of the end-effector. The
optimization is performed on the augmented criteria,
which trades off the sensitivity function of the errors and
the input load at the joints. A design example of the
compensator is provided that meets the design
specifications.

1. Introduction

Control of the end-effector in contact environment is
difficult because the controller has to operate in two
different states: free and contact motion. In free motion, a
manipulator is controlled in a free workspace without
conlacting the environment. In contact motion, the end-
cffector of the manipulator interacts with the environment,
which exerts external force on the manipulator. In the
transition between free and contact motion, the reaction
force changes from zero to a certain value or vice versa.
This change makes it difficult to develop a rcliable
controller for contact motion of a manipulator.

During the last two decades, two main approaches in
contact control have been developed: hybrid control
(Raibert and Craig 1981) and impedance contral (Hogan

1987). Hybrid control applics two control laws, one
the direction of contact force and another along the

remaining directions of unconstrained position control.
The control torques obtained from each control law are
incorporated to drive the actuators at the manipulator joint,
Since the two kinds of control law are different, switching
logic is required to transit between free motion and force

control. Difficulties are that it is not easy to identify each
direction {or application of control law, and that inaccurate
liming in transition between the two control laws can
cause unpleasant vibration.

In impedance control, the relationship betwecn the
interaction force and the position of the end-effector is
assigned so that, in a constrained environment, contact
forces are approprialcly maintained. In impedance
control, transition between free motion and contact is
smooth. It is, however, often difficult to select the
impedance, especially when the environment is stiff (Lin
1992). The abrupt change of the stiffness causes high
underdamped oscillatory response.

In the present paper, a control method is suggested
that uses high-order target dynamics. The target dynamics
assigns the impedance relationship between the position
error and the compensated-force error of the end-effector
in contact. The high-order compensator is selected so that
it meets multi-specifications (or both {ree motion and
contact control.

As a design tool for the compensator, 36, control
synthesis is adopted. Important consideration in optimal
control is the choice of performance index to bhe
minimized. The two typical indices are %, and % -
norms (Grimble 1986). The former, %, -norm
minimization, minimizes the root-mean-square of errors
and requires known covariance or power spectra of
disturbance including unknown or unmodeled dynamics.
The latter, ¥ ,-norm minimizalion, minimizes the worst
possible case crror and allows all signal having finite
energy as system inputs. The ¥ _-norm minimization
requires less information about the disturbance while
conservative design is reached. This research adopted the
¥ -control theory in the design of compensators that
reject disturbance.

II. Target dynamics model
Since the dynamics of a manipulator is highly
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nonlinear, two stages control, inner and outer loop, can be
effectively used in control of a manipulator. In the inner
loop the system dynamics is lincarized by cancelling the
nonlincar effects of the manipulator using the computed
torque method. An outer loop is then applied to modify
the dynamics to follow a desired target dynamics. This
desircd dynamics can be selected to satisfy design
specifications. A control schemc is described based on the
larget dynamics that guarantees by itself the smooth
transition between free and contact control.

Assumc that an articulated manipulator, as shown in
Fig.1, is composed of n simply connecled links, i.e., cach
joint which connects the links has one relative degree of
frecdom. A global coordinate system O-xyz is fixed on
the ground. The position and orientation of the end-
effector are x = [x, y, .., ]T e R"™! in the global
coordinates. The joint coordinates are also used to
cxpress the relative translational or rotational motion as q
= [ql, Ay oo qn]T € R"“' in vector form, and
corresponding joint torque (including force for
translational joint) T = [Tl, Tyr v 'cn]T € R"“. The
symbol X, is the environmental position before contact,
and f is the force applied to the environment by the
manipulator. For simplicity, it is assumed that the degree
of the manipulator, n, is same as the number of Cartesian
coordinates used.

Figurc 1 The robot configuration

Manipulator dynamics can be derived, using the
Lagrangian or variational principles, in the joint
coordinates (Chem and Yae 1991) as,

M@q + vq@=1_+ J'f,, M
where v(q, ('1) e R™ js the gravitational, Coriolis, and
centrifugal force; T, & R"™! is the control torque applied
at joint actuators; J is the Jacobian of the Cartesian
coordinates with respect to the joint coordinates; = €
R™ i the external force due to contact; and M € Rwn is
the generalized mass matrix.

In designing the target dynamics, two things arc
considered. Firstly the target dynamics for control of a

robot can accommodate the free motion and contact motion
and smooth transition between the two. Second, the target
dynamics also allows tracking of contact position or force.
Considering these two things, we suggest a model of the
larget dynamics that uses state error feedbacks and
compensated force errors.

The simplest form of compensations for force tracking
control is chosen in Cartesian formulation as,

G x, = HE) I, @

where X, =X, - X, posilion error vector, X, = desired
trajectory € Rm(l, x = present Cartesian position and
orientation vector € R™! l‘e = fs - £, force error vector
fd = the desired force or torque € RH’(I, f = the sensed
force or torque (= f,, ) € R™ G(s) = (Is* + K, s+
Kp)impcdance for frce motion control € R™", H(s) =
force compensator € R“x“, and s is the Laplace
transformation. The constants K_and K _ are diagonal
matrices of derivalive and proportional position feedback
gains, respectively.

For simplicity, H(s) and G(s) are chosen as diagonal
matrices which decouple the control dynamics. When
both the sensed force and the desired force are zero as in
free motion, the right hand side of Eq.(2) vanishes, and it
becomes a free motion controller as G(s) X, = 0. Itis
noted that only position and velocity feedbacks of the
contact point are used in free motion control.

When the end-effector of the robot begins to contact a
surface, or when the desired force is activated with or
without an actual contact, the force error is nonzero, and
the nonzero force activate the right hand side of Eq.(2).
Equation (2), then, becomes the contact controller. By
properly chosen compensators, the contact control
specifications as well as free motion specifications can be
met. The target dynamics, then, simultaneously satisfies
both the specifications of contact and free motion control.

The joint torque is derived from the control algorithm.
Feedback and feedfowards of states and force are used
according to the target dynamics. The joint driving
torques based on the target dynamics Eq.(2) are obtained
as,

1O = Y@ o+M@u -1 0

where

WO =35 K, % K x BT al @

and the symbol * is a time convolution and C(q, ('1) and
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ICI(q) are the estimates of nonlinear force v and inertia M,
tespectively. In practice, it is possible that the sensed
[orceAfl may contain errors, and the estimales, c(q, ('1)
and M(q), which resuits (rom on-line computation of the
manipulator model dynamics, may have estimation errors.
However, we assume, for simplicity in devcloping control
algorithm, that the sensing and the estimations are so
accurate that the measurement and estimation errors are
negligible. .

III. Parameterization of stabilizing
compensators

Parameterization of controllers, in general, simplilies
the design process. The parameterization is applied to the
design of the compensators in the target dynamics. Since
the contact force is regarded as the output of the control,
and the position is used as the input to the controller, the
plant model of the contact environment is improper. The
parameterization of the improper plant is introduced.
Sensitivity functions for position and force errors are then
defined for controller design.

The major difference between the target dynamics and
the model reference control is that the resulting dynamics
is the referenced model in the latter, but not the target
dynamics in the former. In the model reference control, a
plant dynamics is cancelled, and the plant is controlled to
follow a reference model. In the present control, the plant
consists of the interaction between the end-cffector and the
cnvironment, and only the dynamics of the manipulator,
not the environment, is cancelled. As a result, the stability
and performance depends on the interaction that is
considered in the analysis and design.

Figure 2. The control system

It is desirable to reduce design specifications by
parameterizing the controllers. Since the plant, i.c., the
contact environment in the present rescarch, is stable, the
closed-loop dynamics can be paramcterized by a family of
stable, proper, and rational polynomials (Zames and
Francis 1983; Doyle et al. 1992). The design problem is
then simplified to picking up a polynomial from that

family, instead of checking broad potential compensators.
In the result, the design problem of closed-loop control is
transformed into an open-loop design problem in
parameterized domain, which can casily satisfy the rest of
the design specifications. Moreover, the sensitivity
functions can be expressed as affine functions (linear plus
constant) of the parameterization, and further derivation of
%, control problems is simplified.

It is assumed that the environment can be modelled as
a simple passive mechanical system that consists of
inertia, damping, and sti{{ness as,

l‘S = E(s) (x - X))+l = f &)
where
E(9) = M, 5"+ C s+ Ky ©)

and the symbol l‘o is the force disturbance from static load.
The coefficients matrices; inertia ME’ damping CE’ and
stiffness K_ of thc environment; are diagonal matrices.
These matrices as well as the environmental geometry X
may vary according to contact position.

A simplified linear control loop can be drawn as in
Fig.2 by substituting Eq.(5) to Eq.(2). The closed loop
can be viewed as a system with two-input (x fd) and
two-output (x , fs) with position disturbance X, and force
disturbance f(). Viewing the control loop in Fig.2 as a
multi-input and multi-output system, each component of
sensitivity functions is obtained. The force error fe = fd -
fS is written as,

f = —E(s)(x-xo)+fd—f0

[

=E(s) xC-E(s) (xd-x0)+fd— f0 M

From Eq.(2) and (7), the output errors are derived in
terms of sensitivity functions as,

X, S &® S (s Xg - X,
; = 8)
el 8,0 sy [T T
where the sensitivity functions are defined as,
S S5
S(s) :=
5,6) S
G'HU+EG'H)'E -G 'HI+E G HY!
= )

I+E G "oy 'E (14+E G 'H)!
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In Equation (9), Sxx(s), er(s), S;, (s) and Srr(s) denote
the sensitivity functions of position-position, position-
force, force-position, and force-force, respectively.
Equations (7) shows that the output force and position
crror arc dependent.  Since the output vector Eq.(8) has
twice the dimension of the system output, either the
position or force error can be exclusively chosen in
design, depending on control task.

The family of all stable, proper, real-rational function
matrices is denoted as B 3 . In the closed loop of
Fig.2, the inverse of the free motion controller, G'](s), is
in R ¥ _. The environmental model, E(s), is, however,
order of two in 5. It implies that the plant is improper or
E(s) ¢ R ¥ __. The controller parameterizations are
developed for proper plants (Cho 1990; Francis and Doyle
1987; Zamcs 1981). The theorem (Doyle et al. 1992) for
proper plants is extended for improper plants in the
present problem. Though E(s) is not in ®, 36, the
combined (unction E(S)G'l(s) is in B3 . Using this
fact, the following lemma is derived.

Lemima: Assume that E(s) G-l(s) stable and proper,
and the position input x, and disturbance x are bounded
to their second order derivatives, i.e. Il E(s) (x4 - x I}, <
oo, The set of all compensators H for which the feedback
system are bounded-input bounded-output (BIBO) stable
cquals

{no=dl1-Ec' o' :qw e m%_} 0

The proof is shown in Lee (1993).

The stabilization parameter Q(s) is the transfer
[unction from fy to f}, as,

oe)=H[1+EGc'Hu ]! a1

The scnsitivity functions Eq.(9) can be wrilten in a
multiplicative form of matrices from Eq.(11) as,

o PR

This parameclerization is used lhrouvgh the subsequent
development of control problems.

Optimization of the Compensators

An oplimization problem is formulated by defining a
performance index. The design problem for the
compensator is formulated using ¥ __-optimality criterion.
In the problem of the optimization, the control efforts, i.e.
motor torques, computed by the nonlincar dynamic model
are approximated and incorporatcd. Based on thc
resulting augmented optimality, a compcnsator is

determined by the model-matching technique.

The ¥ _ -optimization problem is to find a
compensator that minimizes the worst errors due to
exogenous disturbance or inputs. This optimality Icads to
the minimization of the 36__- norm of sensitivity functions,
which are the transfer functions from the disturbance
inputs to the output errors.

In the present prob]nem, the &,-norm is applied Illo
both the position in B, and the force output in 323.
Therefore, the total disturbances to the system are in 32 .
The resulting ¥ _, minimization P)Elc‘ablcm is still to find a
stabilization parameter Q()in ¥6_ .

From Eq. (8), a disturbance input vector that is a
squarc-integrable vector function bounded with unit 5,
norm can be defined as, -

Xg - Xg 2
vd;:[ ]e T, (13)
fs - 1o

The possible disturbance v is modcled as

{vgl vqg =Wy()d, Iidil, < 1} (14)
where
W2X(S) 0
W,(s) = 15
P W, (s) 1

The weighting functions W, (s)e R¥E>" and Woils)
e R¥ lf:" for position and force disturbance,
respectively, are stable, proper, real-rational, and
minimum phase. The weighting functions are chosen to
reflect the disturbances to be attenuated.

It is noted that the control input is the torque that
applies ‘at the joints. For the torque is nonlinear with
respect to the input and disturbance, the linearized torque
is considered in the optimization. For the linearization, it
is assumed that the manipulator is operating slowly, and
the input force and gravity is rclati‘vely’smzii’lr. The joint
torque is then written in terms of the stabilization
parameter (Lee 1993) as

Tel8) = (Tyg - Tor Qg T3) vy (16)
where
Ti.=[" J7 ] (n

Ty = [IT{A@Is2G EG") JT(A G l4EG™ ]
(18)
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E 0 Qo
Ts= [o 1 ]Wz’ Qn=10 © (19)

Ag=Tmy! Q0)

The modcl-matching problem for the error
minimization (Francis 1987) often results in improper
controllers. This case is avoided by considering the
control inputs in the criteria. By modilying the
performance index, the 36 _ minimization yields a model-
matching problem with augmented coefficient matrices.

Taking &y norm to the Eqs.(8) and (16) yields an
augmented optimization problem as

X
N o 2
minimize sup il iy + Ay
dil,<1 .
= min I T| - T, Qy T3 llo 2]

from Eq.(14), where the augmented matrices Ty, and T,
are obtained from Eqs.(12), (13), (15), (17) and (18) as

0 0
T =| WirE Wox Wi rWy (22)
bw3‘:JT w3‘c JT
[ w, ¢ W, G!
" x 1x
T,=| W EG"' W EG!
| wyaT a6 +EGT) wWodTa s’ 6 +EGT)

v (23)
and W, e R%l is a weighting factor that assigns
weight to joint each joint torque. The weighting functions
Wi, () e ﬂ.%lxn and W (s) € 'ﬁ.%:’x" , are stable,
proper, real-rational, and minimum phase and select the
outputs to be aifénnated.

The weighted sensitivity-minimization problem Eq.
(21) can be considered as a standard model-matching
problem in ¥ _ control theory (Francis 1987). The
stabilization parameter Q,,(s) € R ¥ has, however,
not 2nx2n independent function elements, but nxn. This
situation occurs because the redundant inputs, i.e.,
position and force, are used in control of contact
dynamics. The general solution method of Eq. (21) is not
available so far. Nevertheless, the problem can be
reduced to the gencral model-matching problem, by
choosing the position or force disturbance exclusively.

The solution methods to the model-matching problem
are found in many rcferences (Lee 1993; Francis 1987;

Doyle 1983).  Once the parameter is found, the
compensator is determined from Eq. (10).

V. A design example

In order to demonstrate the effectivencss of the
described design tool, a design example is presented. For
simplicity, a compensator is designed for a 2-degree of
freedom manipulator. The position control specification is
applied to the herizontal x-direction, and the force error
specification to the vertical z-direction. '

The contact environment has stiffness without
damping or inertia. The free motion controller G(s) is
designed to have zeros at -20. Then the environment and
the frec motion controller are written as,

100 0
E= (24)
0 103

s2440s+400 0
G= (25)
0 s2+405+400

The bandwidth for posiiion control is 0.1 rad/sec, and
for the force control 10 rad/sec. To simplify the problem,
the force input weighting W, (s) is taken as zero. The rest
weighting functions are selected as,

s+l 0 0 0
Wi, =| 10 - Wil 0.01s+1 | @9
0 0 0.Ts+1
Wy =E',  Wy9)=0 @7
Wi =p [1 ° } p =10 28)
0 1 _

where the weighting for motors W4, are distributed
equally to both motors. For the optimization, a
configuration is chosen that forms a regular triangle with
the ground. Jacobian and inertia matrices are evaluated at
the configuration at

0 1.7321 0.6805 -0.5773
J= » A= (29)
2 1 -0.5773 1.0417

Substituting Eqs.(24)-(29) into Eq.(21), the standard
model-matching problem is obtained. The design problem
is solved, and the results are shown in the Figs. 3 and 4.

The position-position and force-force sensitivity
{unctions corresponding to the position and force control
dircctions are shown with the weighting functions in Figs.

— 444 —



3 and 4. The tracking errors in slcady state are S, 1,(0)

5.335x10°% for position control in the horizontal
dlrectlon, and S 99(0) = 0.1064 for force control in the
vertical dircction. The tracking crror is reduced when the
bandwidth of weighting function decreases.
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Figure 3. The position sensitivity
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Figure 4. The [orce sensitivity

The performance of the force control in Fig.4 shows
typical behavior such that the sensilivity is low at the
frequencics where the weighting is large. The position-
position sensitivity in Fig.3 is low at the low frequencies
where the weighting is large. As the weighting increases,
the position-position sensitivity increases at the middle
frequencics. The sensitivity at the infinity yet approaches
zero at the infinity, because the position-position
sensilivily function with the stiffness environment is
strictly proper.

The compensator can be computed from Eg. (10).
The resulting compensator is, however, of high order.
The high order compensator is impractical because of
reliability and difficulty in hardware construction. The
compensator needs reductions in order (Therapos 1992).
This compensator reduction problem is out of the scope of
the present research. Actually, the technigues for
controller reduction are still under development.
Anderson and Liu (1989) recently gave a review on
controller reduction, and Chen et al. (1992) presented a
system-order compensator for 3 _ optimization.

YI. Conclusion
A control method based on the target dynamics is
suggestcd. The target dynamics uscs a high order
compensator for the control of the end-effcctor in contact.
The compensator is designed applying %, control
theory.

The target dynamics can meet frec motion and contact
control specifications. Stabilizing parameterization is
applied to the improper plant of the environment with
rclative order 2 high. Considering the linearized torque in
the optimization, the design problem for the compensator
is transformed into the model-matching problem, which
can be solved theorelically and computationally. The %,
synthesis is adopted to determine the stabilizing parameter.

Finally, a design example shows that the present tool
eflectiviey determines the compensator that meets the
design specificalions.
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