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Abstract

This paper presents a simple methodology for reducing
the order of H,, controllers in the mixed sensitivity con-
trol problems. The key point of this methodology is to
transform the generalized plant expression to new one,
where the control object and the weighting functions for
the sensitivity function may have some poles on the imag-
inary axis. So that, this methodology makes it possible to
use the standard method to slove the general H,, design
problems about the mixed sensitivity probleins, even for
a servo system or a oscillatory system. We derive that
the order of H,, controllers designed by this methodol-
ogy may be reduced to n, where n, is the order of the
denominator of the control object. It is clear that n, is
lower than n, + n,, which is the order of H,, controllers
obtained by the ordinary Ho, design method up to now,
where n, is the order of the denominator of the weighting
function for sensitivity. Finally, a numerical example is
given to illustrate the resulls.

Keywords: H,, controllers, Low-order stabilizing con-
trollers, Mixed sensitivity problem.

Notations

R" ™ : the set of n x m proper real—rational matrices.
CO0 : the imaginary axis.

C* : the open right half plane.

C* : the closed right half plane.

A| B s _
[C F] =C(sI - A)"'B+ D.

1 Introduction

In this paper, about the /i, controller design of single
input single output systems, we consider a control sys-
tem in Figure 1, so-called the two block mixed sensitivity
H,, design problem, where P(s) is the control object,
W,(s) and W,(s) are weighting functions for the sensitiv-
ity function S (S = (I + PK)™!) and the complementary

sensitivity function 7° (T' = PK S) respectively. The sig-
nals are as follows: w(s) is the disturbance vector; u(s)
is the control input vector; 2(s) is the controlled output
vector; and y(s) is the measured output vector.

JK
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Fig.1. The mixed sensitivity H,, problem.

The ‘H,, control problem’ is then to choose a controller,
K(s), that makes the closed-loop system internally stable
and minimizes the H -norm of the transfer function from
w(s) to z(s). In fact, we will consider the problem of
finding a stabilizing K& such that

ILFT(G, K)|lw <y ~€R* (1)
~ where[7]
Gi Gy
¢ = [Gzl Gzz]
'] T
= 0 w,P (2)
(7] (-P]
and

LFT(G, K) [”0/] + ["J,V;,P ] K(I+ PK)™I
t
Ww,S

= W,T} ()

Note that —G;(s) is the control object. So the internal
stable problem is to choose a controller, K'(s), that makes
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the P(s) internally stable. Since S+ T = 1, it connot be
satisfied simultaneously to make gains (|| S(jw) || and ||
T(jw) |I) as low as possible together. We try to obtain the
low sensitivity on the low frequency band and consider
the robust stability firstly on the high frequency band by
choosing suitable weighting functions separately, W,(s)
and W,(s). I such a K(s) exists, we say that the H
problen is solvable. The state-space realizations of P(s),
W,(s) and W,(s)P(s) will be denoted as

P(s) = [—g:—%} ()
Wi = [t ©
Wi(s)P(s) = [g—f%ﬂ (6)

where A, € R™P*"P and A, € Rnsxns, then the state-
space representation of the generalized plant G(s) in (2)
is [7)

where A € R(mstnp)x(nstnp),
The following assumptions are made to ensure well-
posedness and the existence of a controller [1].

A1l. (A, By, Cy) is stabilizable and detectable.

A2. Dy, has full column rank and Dj; has full row rank.

_A3. D)z and Dj; are transfonned into Dy, = []

Dy = [0 I] by ascaling of u and y, together with a uni-
tary transformation of w and z. Dy is partitioned com-
Dun Dunz
Duan Dun|’

0 ] and

patibility with D)3 and D,y as Dy = [

A—jwl B,

A4, Torall Vw € R, l a Dia

] has full column

rank.

—jwl B
10 D2

Recently, a theory of optimal H,, design has been
widely developed. Among all tools available for such de-
sign, the mathod of Glover and Doyle [1} is widely ac-
claimed which is called the standard H,, control design.
In the ordinary H,, control, the control object P(s) and
weighting functions are not to have poles in C%, so that
the assumptions, Al and A5 are satisfied and the or-
der of the designed I, controller is equal to n, + n,
when the H,, problem is solvable. The order of this con-
troller is higher usually. But, in some case, it is necessary

A5, ForallVwe R, [A ] has full row rank.

for a system design that the control object or weighting
functions have soime poles in C?, in particullar, when we
want to design a servo system. In recent years, Zhou
and Khargonekar [2], Sampei, Mita, and Nakamichi [3],
Koide, Hara, and Kondo (4] have presented the meth-
ods to solve this problem, which introduce a sufficiently
small positive constants e in the process of solving the
H,, prollem. Since these methods depend on the value
e, we have to work very hard to choos e suitably. Liu
and Mita [5] have treated the same problem, but they do
not use the standard H,, control design. All of the meth-
ods [2] to [5] also give that the order of the designed H.,,
controller is equal to n, + n,. Otherhand, Gu and Choi
[6] have studied the problem of reducing the order of H,
controllers, but the design will become difficuld when the
control object or weighting functions have some poles in
Co,

The purpose of this paper is to present a simple and
effective methodology for the H., control problem of the
two block mixed sensitivity, where the control object or
weighting functions for the senstivity function may have
some poles in C°. It can directly apply the standard H
control design {1] to slove this problem and will reduce
the order of the designed H, controller into n,. Our
methodology can be also applied to the I, design of
MIMO by using the decoupling control to transform it
into an H, design of SISO. As for the design of a servo
system, we can treat it by multiplying a integrator to the
control object beforehand.

2 Low-order H, controllers

Cosider a ganeral control object, P(s) described by a
transfer function

kp(s +b1)(s +b2) ... (5 + bn,)

Pls) = (s+a)(s+a).. (s+am,)’

(®)

where the transfer function is strictly proper and has no
the transmission zeros in C°. We define a set Cp,.y for
the poles —a;(z = 1,2,...n,) of P(s}) as follows:

C;lnx =: {_aj I Re(_aj) = maz(R._(——-a,v)),
a; =a;, o € C-:+}

Remark: We assume that C ., # ¢ namely Cg, ., is
not a null set in the following discussion.

By this definition, we choose that all the poles of the

weighting function W,(s) are equal to all the elements of
Crax- Assume the state-space representation of W,(s)
be given in (5) and (A,, C,) be detectable.
Physical meaning: When we design a servo system, the
origin belongs to Cy, .- The gradient of the gain plot of
W,(s)"!is coincident with that of the gain plot of S(s) on
the low frequency band. Therefore, the gain of S(s) can
be reduced graetlly on the low frequency band, namely,
the low sensitivity can be realized easily.

We divide P(s) to

P(s) = Pi(s) Pa(s) (9)
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and consider the following two cases.
1). Ciax € C%:

[t means that P(s) has poles on the imaginary axis. We
choose that Py(s) has all the poles of P(s) in Cj, a4, and
has no any finite transmission zeros, namely the numer-
ator of P;(s) is a constant. Therefore P(s) has neither
poles in Cp,.y NOr transmission zeros in C® by the as-
sumption for P(s). Let P(s) have r poles in C°. Take a
polynominal

M(s)=(s+d)(s+d))...(s+d,) (10)
d; €C+, 1=1,2,...,7

to change the division of P(s) as

P(s) = M(s)Pi(s) x e )Pz(s) (11)

where d; € C* means stable poles or zeros.
Define

A, B,
Pus) = MR =[G ] 2
1 A B
> _ » — pm?2 pm?2
I1n2(5) - A!(S)PQ(S) [Cpnﬂ 0 ] (13)
then
Ay BCpm | 0
P(S) = [/C‘p B;) ] = [ 0 Apm2 Bpm21| (14)
r Cprul melcpm2 I 0

It is clear that Dp,.g # 0 and npma = np, where npp is
the order of the denominator of P,,(s).
2)' C;\ﬂx ¢ CO: R

It means that P(s) has no any*poles on the imaginary
axis. Let

m(8)
Prna(s)

Pi(s) =1 (15)
Py(s) = P(s) (16)

The state-space representation of Pi(s) will also be
given in (12) but Cpmy =0 and Dpq = 1, then

o (g lpe] o

Il

From (9) to (16), we have the next lemma.
Lemma 2.1. As for the mixed sensitivity I, control
problem in Figure 1, the generalized plant G can be given
by

{W,] { -W,P,,

= o

K}

o o] = 03] Gl o
Gn Gz [Pml] _
Proof. By (11) — (16),
LFT(G k) = [”g] +[ vf,v H;”]K(I+PK)"‘P,,.]
t m
W, W,P) 1
- [ ] [Wf ]\(I+Plx)
s
T

X

E

Now we choose W (s) so that W,(c0)P2(00) # 0,
namely, W(s)Pn2(s) has no transmission zeros in the
infinity. To simplify discussion, we let W,(s)P,.2(s) be
given by a minimal realization as follows with choosing
matrices C; and D; suitably,

R =

where D, # 0.
Theorem 2.2. The generalized plant G(s) in (18) can
be described by a state-space realization as follows

G(s) =
Ay B,Cpm2z B, 0
0 ALmZ \ 0 mZ]
= (C, D, Cpmg] [ ,] [ 0 ] (20)
0 —‘C¢ 0 Dt
[Comi DpmiCom2] | [Dpm]  [0]

where A € REMpHr)x(np+r)

Proof.
owo-t]
. [6 DGom A, —B,Cpa |7V [ B,
0 —c. s — Apma 0
_ [D,+C(e1 A,) ]
= 0

- e

cure 3] [ %
[”3"’ el

_ [(—D. - Cy(sI - A,)“‘B,)P,,mg(s)}

Dt + CI(SI - Ame)—prnﬂ

[ Wils )IW’ZES)]

GZI(S) = pml + [ mel ] X
sl — As —B.;Cynﬂ
0 sl — Apm2
= mel + Cpml(SI —A,) lBl

= Ppmi(s)

G;z(s) =0+ [Cp 1 D,,mlc,,,ﬂ] X

sI—A, ~B,Cpma | '[ 0
0 sl — Apm2 _Bpm2
= _melcme(SI - Ame)_]Bpmz

- Cpml(SI A )—lBstmZ(SI_ Ame)_prm2

= - l'"ll(s) Ppra(s)
= —P(s) 0O
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For the state-space realization of G(s) in (20), we will
check the assumptions A1-A5 made in the standard I/,
design method.

About the assumption A1, the next lemma is given.
Lemnma 2.3. In the state-space rtealization in (20),
(A, B, Cy) is stabilizable and detectable if and only il
(A4,, By, C;) in (4) is stabilizable and detectable.

Pr oof )
10) max ¢ CO by ) 0 (]7)7

A B2
C,
Because W,(s) has no poles in C*, therefore it is clear,

(A, By, Cy) is stabilizable and detectable
< (4,, B,, C,) is stabilizable and detectable.

A, B.C,| 0

29). Chax - C C, by (10) and (14),

AlB, As . BCpma ]3
o = 0 A pm2 'pm?2
- rml pm 1 C, pm2 l 0
_ — B
- C

and the pole/zero cancellation model H(L% is stable func-
tion, therefore

(A, By, C,) is stabilizable and detectable

< (A,, B,,C,) is stabilizable and detectable. U

By the definition of P,,;(s) in (12), (15) and the choice
of Wi(s) in (19), il is clear that

Dpy #0 and Dy #0

Therefore, the assumption A2 is satisfied for the state-
space realization in (20). Take a scaling of u and y,
together with a unitary transformation of w and z, the
assumption A3 is satisfied for (20) too.

A suitable choice of Wi(s) enables us to assume without
loss of generality that Wi(s)Pm2(s) has no transmission
zeros in C%. The assumption A4 will be salisfied by the
next lemma.

Lemma 2.4. In the state-space realization in (20), for
al Vwe R,
lA<—ij Bz]
¢ Dy,

has full column rank.

Proof. By (20),

A- ]w] 32
rank
e Dlz]
[A, — jwl B,Cpna 0
- 5 0 Apml - .7"'-’1 _Bme
= rank c, D.Cyms 0
L 0 —C D,
_ A~ jwl
= rank c ]
. . Ame - ]L"’I Bpm2
+ rank _c, D,

Because (A,, C,) is detectable, then for all YV w € R,

A, — jwl
Ca

has full column rank. By the assumption that W(s)
Pr.2(s) has no transmission zeros in C° then for all ¥
w € R,

Apm2 - ]LUI _Bpm2
—Cy Dy

has full rank. U

In the same way, the assumption A5 will be satisfied
by the next lemma.
Lemma 2.5. In the state-space realization in (20), for
alVw e R,

A—jJuwl B
has full row rank.
Proof. By (20),
| A—jwl By
rank [ C, Dzl}
AJ - .7("’1 Bscwn? Bs
= rank 0 Apma —jwl 0
'pnl 1 mel C’me me.l
i, —jwl B
— k Ve s k)
ran [ Cpml mel ]

+

rank [Apmz — jw[]

Because P,n(s) has no poles in C°, then for all Vw € R,
{Apm2 — jwl] has full rank. By the choice of M(s) in (10)
and the definition of Pn;(s) in (12), (15), Pai(s) has no

transnission zeros in C°, then for all V w € R,

A, —jwl B,
Cpml D pm}l

has full rank. O

For the general control object P(s) given by (8), we
can derive the next theorem, which is about the order
ny of the denominator of the controller designed by our
mathodology.
Theorem 2.6. For the general control object P(s) given
by (8), we have derived that the state-space representa-
tion of the generalized plant G(s) can be described by
(20) as the mixed sensitivity H,, control problem. If the
H,, problem is solvable, the order n; of the denomina-
tor of the controller designed will be equal to n,, where
the controller is the central solution of the H,, control
problem.

Proof. By (20), A € RM"p*+0X(0p+1) we know that the
order ny of the designed H,, controller will be equal to
n, + r, but

19). Cax € CO, the order n,, of the polynominal M(s)
is equal to r. The transmission zeros and poles of the
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central solution have the stable poles of Wy(s)P,2(s) and
the transmission zeros of Pn1(s) respectively [9]. Nainely,
the central solution has the same r stable poles and trans-
mission zeros which correspond to the zeros of M(s). By
cancelling these r poles and zeros, the order ny of the
designed H,, controller can be reduced to n,.

2°). Ciiax ¢ CP, the transmission zeros and poles of the
central solution have the stable poles of P,,3(s) and W,(s)
respectively [9]. By the choice of W,(s), the number of
the poles of W,(s) is  and they all belong to the stable
poles of P2(s). Therefore, the order n; of the designed
H,, controller can be reduced to n, by cancelling these
r stable poles and zeros which are equal to the poles of
We(s). 0O

Remark: When the zeros of M (s) are equal to a part of
the stable transmission zeros of P(s), the size of 4 ma-
trix of the generalized plant G(s) will decrease, but these
lemma and theorem above also hold with a simple varia-
tion. And the designed controller as the central solution
of the H,, control problem will have the poles which are
equal to this part of the stable transmission zeros of P(s).

3 A numerical example

Let us consider a example as follows in order to illustrate
the application of our methodology.

P(s) = $21+—4) (21)

where the control object has poles 0,+352. So we define
Criax = {0, +72} and take the polynominal M(s) as

M(s)=(s+ 1)(s +3)(s +5) (22)
Divide P(s) to
(s+ )(s +3)(s+5)

Pri(s) = s(s? + 4) (23)
1
P /
L) = GIOGTIeTH) (21)
The weightings funclions are chosen as
p
|44 = ———
J(s) 3(32 + 4) (25)
3
o - B2

According to the state-space realization of W,(s)P4(s)
given by (19), we can obtain Cy and D, as follows

Cy = [Cu Cy Cw]
1.
= ﬁ[a"——lﬁv 302 -23 3a-9] (27)
1
D = m (28)

By (20), we can obtain the state-space description of the
generalized plant G(s) as

0 1 0 0 0 0 01 T01]
0 0 1 0 0 0 0 0
0 -4 0 1 0 0 1 0
0 0 0 © 1 0 0 0
0 0 0 O 0 1 0 0
0 0 0 —-15 —23 -9 0 —1
p 0 0 0O 0 0 0 0
[0 0 0 -Cy —-Cp "Ccs] [0 | D,

| [15 19 9 1 0 0] (1] [o] |

(29)

When p = 16, a = 12 and # = 3, the central solution
for the standard H,, problem is given by

37688(s + 1.0647 + j1.7648)
(s +25.143)(s + 11.1196 + ;14.0465)
(s 4 1.0647 ~ 71.7648)(s + 5}(s + 3)(s + 1)
(s + 11.1196 — 714.0465)(s + 5)(s + 3)(s + 1)
(30)

K{s) =

Cancel the same stable poles and transmission zeros: —5,.
—3 and —1 which correspond to the zeros of M(s), we
can obtain a 3 order H,, controller which is proved by
our theorem.

37688(s + 1.0647 + 51.7648)
(s +25.143)(s + 11.1196 + ;14.0465)
(s + 1.0647 — j1.7648) (31)
(s + 11.1196 — 714.0465)

K(s)

The poles of the designed closed loop are as follows

~12.5277 & j0.6681, ~10.6525,
—7.7096, —1.9824 = j2.9080

and the H-norm of the cost function is satisfied since
IZFT(G, K)o = 0.9044 (< 1).
The frequency respones of S, W' and T, W, ! are

shown in Figure 2 and Figure 3 by the solid line and the
dashed line respectively.

100

Gain dB

1

Frequency (rad/sec)

Fig.2. Singular values of S(s) and W1,

4 Conclusions

In this paper, we have presented a mathodology of re-
ducing the order of the H,, controllers, for the mixed
sensitivity H,, design problem in single input single out-
put system, even if the control object and the weighting
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functions for Lhe sensitivity function have some poles on
the inaginary axis. The key point of this methodology
is to parlition the control object as two parts. One part
of them has all the poles of the control object on the
imaginary axis; another one has the orther poles. Using
this partition, the construction and the state-space rep-
resentation of the generalized plant G(s) are shown to
be simple. So that, this methodology makes it possible
to use the standard method to slove the general mixed
sensitivity H,, design problem and to reduce the order of
the designed controllers into n,,.

W T

T IO : <

Gain dB

SO0l USRS S L

I 1| — — - S N ‘ :_._."';_;‘.
101 100 1 102

Frequency (rad/fsec)

Fig.3. Singular values of T((s) and W',
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