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FLEXIBLE ARM POSITIONING USING H,, CONTROL
THEORY WITH OPTIMUM SENSOR LOCATION

Rijanto Estiko, Shinya Nishigaya, Antonio Moran and Minoru Hayase
Tokyo University of Agriculture and Technology
Koganei-shi, Tokyo 184, Japan

This paper is concerned with the positioning control of
a flexible arm system using Mo, control theory with optimum
sensor location. Firstly, by virtue of the orthogonality of the
flexible modes of the flexible arm a reduced order model of the
distributed parameter system (DPS) representing the arm has
been formulated. The dynamical coupling between the flexi-
ble arm and DC motor has been considered to formulate an
arm-motor composite model. In order to achieve precise posi-
tioning with vibration attenuation, sensors have been optimally
located. Finally, a robust Ho, controller was designed and the
performance of the positioning system has been analyzed.
Keywords: DPS,0ptimum sensor location, H,, controller.

1 Intrdduction

The demands for increased robot accuracy and high speed
coupled with energy saving and large workspace requirements
necessitate the evaluation of robot flexibility. Meanwhile, there
has been many research on analysis and control of flexible struc-
tures, modeling and control of flexible arms has become one spe-
cialized field in this area. Modeling of flexible arms can be done
by several methods : spring-mass vibration model, finite ele-
ment method(FEM) model, and distributed parameter system
(DPS) model. DPS models may properly represent the dynam-
ics of the flexible arm and many results have been reported con-
cerning this modeling metliod. However, most of these papers
neglect the dynamics of the motor whicl drives and controls the
flexible arm. Since the servo motor has limited capacity and
is affected by the dynamics of the flexible arm, it is necessary
to include the dynamics of the motor to formulate motor-arm
composite models. In this sense this paper analyzes the model-
ing and control of flexible arms including the motor dynamics.
The modeling of the flexible arm has been done considering a
distributed parameter system model with reduced order.

It is known that certain performance goals can not be
achieved through feedback control regardless of the control law
used if certain structural conditions, such as observability, are
not properly satisfied. In the case of flexible robot arm, rota-

tional angle can be detected by using a potentiometer attached '-

to the hub. The position of the tip of the flexible arm is com-
posed by the rotational angle of the hub and the deflextion of
the arm due to vibration. This vibration can be detected using
strain gauge. lere, the optimum location of the strain gauge
is determined by maxinizing a Performance Index defined in
terms of the energy of the measured signals which is related to
the size of the observability gramian,
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Figure 2:  Theoretical model of slewing flexible arm

2 Modeling

2.1 Slewing Arm Equation

Figure 1 shows the structure of the experimental flexible

arm and control system . Figure 2 shows the theoretical model.

Hamilton’s Principle can be utilized to obtain the linear equa-

tions of motion and boundary conditions of the flexible robot

arm with torque actuation at the hub [1]. This principle is a
kind of Variance Principle that can be formulated as:

iz
/ ST —V4+W)t=0 (1)
t

with & denotes the variance, and 7', V, W are kinetics energy,
potential energy, and virtual work done by external forces, re-
spectively.
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In developing the equations of motion and natural bound-
ary conditions the following assumptions have been made:

. The arm is uniform, the deflection is small and only elastic
delormalion occurs.

2. The arm has high axial stiffness and [lexibility only toward
horizontal forces.

3. Local rotational moment and shear deformations are ne-
glected ( Fule-Bernoulli beam theory ).

4. Viscousity of the air, internal friction of the arm and noan-
linearity of the servo mechanism are neglectible.

By neglecting terms of second degree and higher, the
integro-partial dilferential cquations for the slewing arm motion
and natural bouundary condilions are obtained as follows
Equalions of the slewing arm motion :

L
J 0 +pA / zuy(x, t)de + mLa(L,t)=r(l) (2)
Jo
E T 0smar(t,1) + p Ayl 1) = —p Az (1) (3)

Natural boundary condilions :

A ( L, 1) =0 (1)
E T wepe(Lyty = mLG(t) + in(L,1) (5)

where the suflix z and ¢ refer to partial derivatives respect to
position ¢ and time £, rospectively.

Since the arm is constrained at @ = 0, then the following geo-
metric boundary condition is obtained :

w(0,t) = w,(0,8) =0 (6)

6[rad] is the rotational angle of the hub, aud the deflextion
of a point P at z[m] from the hub is represented by w(z, t){m].
plkg/m®. Alm?), E[N/m?), I[m*], L{m] denote density, sectional
area, Young’s modulus, second moment of area and length, re-
spectively. Jo[kg - m?) is the moment of inertia of the hub in-
cluding that of DC motor, mlkg] is the mass of the pay load.
Aund J,[kg-m?] is total moment inertia of the hub-arm-pay load
system which can be calculated as

Jr = Jo+ pAL* /3 + mL? (M)

2.2 Unconstrained Mode Expansion
2.2.1 Solution of free motion equations

To solve the slewing arm equations, firstly 7(¢) = 0 is set
to make a homogenuous integro-patial differential equation and
to solve it by unconstrained mode expansion. The unconstrained
mode expansion is defined as the natural motion obtained in the
absence of all external influences. The structure as a whole is
allowed to vibrate and the solution involves inertia properties of
both the rigid and flexible parts.

Using the classical method of separation ol variables

wiat) = $@) (s (8 = (D) + pa(t) ()
and substituting these equations in Bq.(4) and by assuming that:
L
Jop+ p/l/ x¢(x)de + mLH(L) =0 9)
0
then the following equation is obtained

Jrif(t)=0 (10)

On the other hand, combining Fq.(8) and Eq.(5) the following
two independent equations related to time ¢t and location z are
oblained

i)+ (1) = 0 an
#"(@) ~ Lo o 4 9()] = 0 (12)

where w is a positive constant.
Also, combining q.(8) and the boundary conditions equations
the following conditions are ohtained

$(0) = #(0) = ¢"(1) = 05 ¢"(L) = — 27w [p L+ #(L)] (13)
Morcover, from Eq.(4),(9),(12)

rI
L) (1)
o

pP=—

Ta simplily the analysis, introduce the transformation of vari-
ables ¥(z) = ¢(x) + px , so that Eq.(13) becomes

¢"(x) = B () = 0 (15)
pAwt .
where g% = 7T Eq.(15) expresses an eigen-value problem

with 3 as cigen-value and i(z) as eigen-function. The general
solution for Eq.(15) has the form

$(z) = CCos(Bz) + CoSin(Bz) + CyCosh(fz) + CySinh(Bz) (16)

Cocllicients Cy, ('3, ('3, C4 can be obtained from the following
matrix equation

1 0 1 0 ™ 0
—-1p? A 15 A G J_[o
—f%c* —p%" g2ch® Ash* Cs 0

s tact —f% +as® Fsh’ tach® B+ ash” C, 0

where : s* = sin(AL), ¢* = cos(BL),
sh* = sinh(BLY}, ch* = cosh(BL), e = ";‘}2 , 7= ',—E‘—{’;

For this matrix- equation to have a solution other than the
trivial one, the [oflowing equation wmust hold

{14 cosflcoshiL +
(p—4ﬁ"3 - lﬂ)mfn,/.? Leoshpl — sinhf Leospl)
Ja /)/’\
+2%ﬂ‘2$in/ﬂ,3mhﬂL} =0 (18)

Equation (18) has an infinite number of solutions {or 4. The
cocflicient Cy,C%,C35,Cy are nol independent {rom each other
so that for any f§;, C2,C3,Cy can be expressed as depending on
Cy = C; which is determined in order to normalize the solution.
The above eigen-value problem has the solution

cosfL + coshplL — 2’%/3“351?11/%[,

#az) = feosfz—{ stnfilL -+ sinhfL sinfiz
cospL + coshBL + 252 B~sinfL
_  cosh A sinh:
coshfz + { sinflL + sinh 3L ysinhpa
. {
- 2Lopye (19)

and the solution for w(z,t) and 6(1) are expanded as lollows:

[ o

o) = »(t) + Zl'i wilt),  wlx,t) = Zq‘)i(m)q;(t) (20)
i=|

i=1

where, z € [0,L],t > 0.
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2.2.2 Orthogonality of eigen-value problem and solu-

tion of forced motion equations

Assuming that there are two different solutions ¢;(z), ¢;(x)
of the cigen-value problem stated by Eq.(12) '

ET¢!"(x) = p Awi[$i(2) + piz] (21)
E1¢"(z) = p Aw}[$;(z) + p; 2] (22)

The orthogonality conditions to be satisfied by the different so-
lutions ol the problem are obtained as follow
From Eq.(21) :

L L L
/ E]¢j(.1:)¢$’”(]!)d.‘l}:[)Aw?/ ¢j(m)¢,~(z)dm+p/1w,-2/ ¢i(z)pizde
Jo 0 )
(23)
From Fq.(22) :
L L ’ L
/ E1¢I_(I)¢;ﬂl($)(‘$ = pijz/ ¢.-(:c)¢j(13)d1:+p/1w}/ ¢i(x)pjzds
0 0 0
(21

On substracting Eq.(23) from (24), applying boundary condi-
tions, and substiluting £q.(9) the followiug equation is obtained

L
[ Ay (e )dn + mb L)L) = Joins = 0,i # 5 (25)

On the other hand, by applying boundary conditions £q.(23)
cau be modilied to

L
| Ere@et@s =
L
[ pA6i()8i(@) + ms(DA(L) - Jevis] (20)

By normalizing the eigen-modes ol the [lexible artn, the follow-
ing relations are obtained :

L
/0 [I,’1¢,'(J:)¢j (x)dz + mdl,'(L)tﬁj(L) - Jrpip; = b (27)
L
/ E1¢}(z)¢!(z)dz = w}by; (28)
[}

where, 7,7 = 1,2,... , and §;; denotes Kronecker delta.
These properties of orthogonality are used to solve the forced
motion equations . Substituting £q.(27),(28) in to Eq.(4) :

Joip = (1) (29)
then from Eq.(5)

Gi() + wigi(t) = kit (t) (30)

[p; + =48

{8 — me;(L){pil + ¢i( L)]}

where k; =

2.3 State space equations and output equations

The above cigen-value analysis results in a second order
differential equation of the form shown in Eq.(20). Since the
model will be used to design a controller, the degree of the the
model should be low enough because of the limitation in the
sampling time of control. By virtue of the orthogonalily of each
mode, the model can be reduced to any degree, for example or-
der 2, including rigid mode and the first elastic mode.

Taking into account the eflects of viscousity, the secoud order

diflerential equations become

it

(1) @31)
bir(1), i=1. (32)

Jii+ D
G + 2iwidi + wiq;

The arm is rotated by a DC motor, so the motor dy-
namics should be incorporated into the structural equations of
the model. Deriving the equations of motion (2), (3), the mo-
ment of inertia of the motor was included, but for the recason
of analysis the counter-electromotive force (emf) was not taken
into account. Having obtained the mode function, the emf is in-
cluded into the dynamic equations described by Iiq.31, 32. The
voltage supplied to the motor u, the motor torque 7, and the
emf are related by the following equation :

Kk, L
T= ol K6 (33)
where Ky, Ra, K., 6 are torque constant, internal resistance,
emf constant, and angular velocity of the motor shalt.
By combining Eq.(31),(32),(33), and arranging them properly
the following state space equation is obtained

x = Ax 4+ Buw (34)

wherex = [ 7 §1 qT := [x, 22 3 %4]T is the state vector and
¢; represents the first vibrational mode of the arm. A, B have
the size of 4 x 4, and 4 X 1 respectively. The detailed description
of the state-space equation will be shown latter in section 4.

The experimental setting has 2 sensors, potentiometer and
strain gauge. The output equation can be described as

i
n 0 Npm 0 Kpmpy 7

= = . K 35

v [.'Iz] [o 0 0 Kyp|la| G
qt

y = Czx (36)

where y; denotes the output from the potentiometer and y, de-
notes that of strain gauge. Kp,,, K, are the constant of the po-
lentiometer and strain gauge respectively. The coefficient p(z)
is defined as
(o) = - Lnd9(z)
2 dx?
Where T}, is the thickness of the arm. The procedure to deter-
mine the optimal location of the strain gauge will be presented
in section 3.

(37)

2.4 Modeling and Experimental Results

Figure 3 shows the first 3 flexible modes shapes obtained
by the theoretical analysis. IFigure 4 compares the frequency
responses of the experimental and theoretical results. ‘I'he reso-
nant frequency of the first flexible mode of the theoretical resuits
is the same as that of the experimental ones. It can be noted
that theoretical and experimental responses are close to each
other for the analyzed [requency range. Tlis good agreement
between both responses verifies the validity of the theoretical
model developed in this paper.

Table 1 shows the valucs of the parameter of the model.
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Table 1 Motor — Arm and Pay Load parameters

Parameter Value Unit
Arm-Payload

E 1.96 x 10" : N/m
1 2.08 x1071? m?
A 25 x1078 m?
L 0.25 m
T 1 x10-3 m
p 10.667 x 103 Kg-m™3
Jb 1.667 x10-3 Kg-m?
m 0.2 Kg
Jp 10.971 x10-3 Kg-m?
Jo 1 x1073 Kg-m?
Motor-hub

Ra 1.3 Q
Kt 0.0735 N -m/A
Ke 0.0735 V - s/rad
D 0.0001 N -m-s/rad
Kpm 0.8185 V/rad
Kpa 10 -
Ksg 2500 \

3 Optimum Sensor Location

As mentioned before, the experimental setting has a po-
tentiometer and a strain gauge as sensors. Since the location of
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7
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Pigure 5:  Performance Index of sensor location

the potentiometer is determined structurely, the location of the
strain gauge will be optimally determined. The determination of
the optimum strain gauge location is carried out independently
of the design of the control law. Several strategies may be for-
mulated to determined the optimal location of the strain gauge.
Two are the most common methods: maximization of the energy
of the output signals(measured signals) and filtering techniques
for the optimal estimation of the state variables of the flexible
arm model. In this paper, the first mentioned method has been
considered. )

The objective is to find the matrix C in Eq.(36) that max-
imizes the energy of output y(t). If the system is released from
the initial state z(fo), then energy of the output vector can be
expressed as

E= trace[/ooo yT()y(t)dt) = trace{zd Qzo) (38)

where () is the observability gramian. The gramian Q satisfies
the Lyapunov equation

ATQ+QA+CTC =0 (39)

The Performace Index PI for location of strain gauge is
chosen so that the norm of the observability gramian be as large
as posible and its individual eigen-values are large {3).

2N N\ 7%
PI= (2 A;) (n A;) (0)
i=1 i=1

where \; denotes the eigen-value of the observability gramian
Q. Fig.5 shows how P changes as x varies from 0 to 25 em. It
is clear that the strain gauge is better located near the hub.

4 H, control design

4.1 H,, control theory

In this study, the DGKF H., control theory [4] was
adopted to design a controller for the flexible arm. Figure 6
shows the standard set-up of the M, control problem. In this
figure u,y,w, and z are vector-valued signals: u is the control
input; y is the measured output; w is the exogenous input, and
z is the evaluation output to be controlled. The transfer ma-
trices G and K are real-rational and represent the generalized
plant and the controller, respectively. The standard problem is
Lo find a real-rational K that minimizes the ITo-norm of the
transfer matrix from w to z (:= T,,,) under the constraint that
K stabilizes ¢ [5]. In the frequency domain the H., norm of
the transfer matrix 1%, is defined as:

HTzwllco == sUp Opaz(lew)i {Tmar 1= mazimum singular value)
w

(41)
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Figure 7:  Block diagram of the closed loop and generalized
plant matrix
Many control problems such as: disturbance attenuation, ro-
bust stabilization, tracking problem, model matching problem
can be transformed to the standard H., control problem for
which the optimal criterion to design the controller is
K th Tewlloo < 1 (42)
y u The control design specifications are incorporated in the de-
—— sign procedure by introducing frequency-dependent weighting
functions. By combining the nominal plant and the weighting
Z G W functions the generalized plant can be formulated as:
X = —~Ax + Byu 4 Byw (43)
Yy = C]X+D11’U.+D12w (44)
z = Cyx+ Dyu+ Dpw (45)

Figure 6: H,, Standard Problem
The following assumptions are made on the generalized plant

in order to directly apply the DGKF design procedure of H,,
controllers:

(0).Du = 0, and Dn =0
{1).(—A4, By) is stabilizable and (Cy,—A) is detectable,
(2).(- A, By) is stabilizable and (C,, — A) is detectable.

(3)-05[02 Dyl =1[0 I1j; [ gjz ]Dsz = [(1)}
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The Hy, controller can be constructed by solving the follow-
ing two Algebraic Riccati Equations:

X{BiBT —v*ByBY)1X + ATX + XA~ CTC: =0 (46)
Y[CTC, —7*CTC,)Y + AY + YAT — ByBT =0 (47)
The Riccati solutions X and Y should satisfy:
D.X>0, 2.Y>0
3). 72p<XY) <1; p(XY) := spectral radius of XY

Then, the controller which satisfies the H,, control criterion
1 owlloo < 1 is: :

X = —Akx+ By (48)
u = —Co%k (49)
A = A+ (BBT -4*B,BY )X + zvCicC, (50)

By, = zycT, C,=BTX; Z=[T-4YX]"" (51)

4.2 H,, controller design

To synthesize the controller a nominal plant considering
the rigid and first elastic modes was considered.
The design specifications are :
1). To design a controller of reduced order model which stabi-
lizes the real plant.
2). The steady state error converges to zero when a step refer-
ence is applied.

To achieve these design specifications a regulator control system

shown in Fig.7 was constructed. 8, is the angular position of the
tip of the arm. w;, w, are both measurement noises, and w3 is
Coulomb friction disturbance. Assuming that the Coulomb fric-
tion is small enough, the constant weight b3 is set to be small.
The step reference is applied at the gate of wy. The parameters
of the frequency dependent weighting function Wr(s) are chosen
in order to satisfy the design specifications. Wy (s) has the form

s+ 21
s+ pr

Wr(s) = kr (52)

The steady state error is related to the sensitivity function
S(s), and the robust stability to the complement sensitivity
function T(s)

5(s) = %. T(s) = ffgg, (r'(s) = %) (53)

If v is set to be v = 1, then the design specifications can be
expressed in the following criterion:

Wz (s)T()llo < 1 (54)

4.3 Simulation results and considerations

The weighting function Wr(s) was selected to satisfy :
Aals) Gu(s)

[Wr(s)| 2 Umaz[m]; Fu(s) = () (83)
where A,(s) is the transfer functions of the unmodeled higher
flexible modes. This weighting function and the design speci-
fications are shown in Fig.8. The singular values of the design
criterion T, (s) are shown in Fig.9 and the response of the tip
of the arm 6, for a step reference is shown in Fig.10. It can be
noted that the tip of the arm is able to track the step reference
input with zero steady-state error.
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Figure 8: Weighting function and design specifications
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Figure 9:  Singular value of T},,(s)
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Figure 10: Step response of the real plant with disturbances

5 Conclusions

The modeling of a flexible arin including motor dynamics
has been formulated and verified experimentally. The model was
formulated based on the Distributed Parameter System method
decoupling the rigid and flexible modes of the arm. A poten-
tiometer and a strain gauge were used to monitor and control the
motion of the flexible arm. The location of the strain gauge has
been optimally determined by maximizing a performance index
defined in terms of the energy of the measured(output) signals.
An H, feedback controller has been designed and the tracking
ﬁerformance and robustress properties of the closed loop system

ave been verified.
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