'94 KACC (1994.10.17 ~ 20)

An analysis and modification of a unified
phase I-phase Il semi-infinite constrained
optimization algorithm

Yang, Hyun Suk

Dept. of Electronic Engineering, Hongik University
72-1 Sangsoodong Mapoku Seoul, 121 Korea

<ABSTRACT>

In this paper, we analize the effect of a steering

parameter used in a wunified phase I-phase 1I-

semi-infinite constrained optimization algorithm and

present a new algorithm based on the facts that when the:

point x is far away from the feasible region where all
the constraints are satisfied, reaching to the feasible
region is wmore important than minimizing the cost
function and that when the point x is near the region, it
is more efficient to try to reach the feasible region and
to minimize the cost function concurrently. Also, the
angle between the search direction vector and the
gradient of the cost function is considered when the
steering parameter value is computed, Even though
changing the steering parameter does not change the rate
of convergence of the algorithm, we show through some
examples that the proposed algorithm performs better than
the other algorithms,

1. Introduction

The difficulty of an optimization problem is very much
a function of the constraints, Optimization problems
with max-functional inequality constraints rank close to
the top in terms of difficulty., Recent work on phase

I-phase 11 methods of centers, methods of centers based

on barrier functions, and barrier function methods for
semi-infinite minimax problems constructs a reasonably
promising optimization algorithm ({1-7,9-111).

A phase I-phase Il method of centers was proposed by
Polak [3] and modified by Polak and He [5]. Since the
modified version of the algorithm combines the original
one which is consisted of two parts, it is called a
unified phase I-phase I1 semi-infinite optimization
algorithm with a steering parameter. It is important to
choose a good steering parameter since it may result in
saving as much as 90% of the computing time for some
problems as shown in [5)- Unfortunately, no method is
given to find a good steering parameter,

In this paper, we will analize the effect of a
steering parameter and give a guideline on how to choose
a steering parameter value, This paper is consisted that
in section 2, basic optimization theory is mentioned and
in section 3, the effect of the steering parameter is

analized and a method of choosing a good steering
parameter value is jintroduced. In section 4, the
proposed algorithm is tested with some examples and
compared with a unified phase I-phase II algorithm. This
paper is concluded in section 5. ~

2. Preliminary

Ve consider a semi-infinite constrained optimization
problem of the form:

min cep (£°(x) 1 99 (x) <0, jeM) (1)
where fU ) s
M={1, -, m). For all jEM the constraints are
defined by ¥'(x) = max ,ey,¢/(x,¥) where ¢(:,-) is

continuously differentiable and

continuously differentiable and Y;=[q; bjJC R is a
compact set. The reason why it is called semi-infinite
constrained optimization problem is that even though it
has m constraints, each constraint ¥'(x) is the maximum
of infinite number of functions. The constraints can be
written in a compact form, W(x) <0, where w(x) is:
defined by ¥(x) = max jem¥’(x). Polak [3] proposed a
phase I-phase Il semi- infinite optimization algorithm
that solves the problem (1), which is consisted of two
parts: one that when a point x; is not in the feasible
region where all the constraints are satisfied, it tries
to find a point in the feasible reagion and one that when
a point x; is in the feasible region, it tries to find an
optimal solution within the region. One drawback of the
method is that when a point x; is outside the feasible
region, it is possible that a next point x;,; is farther
from an optimal solution since the search directon vector
is computed only using the constraint functivns, Polak
and He [5] published an improved version of the method by
combining two parts together. Before the modified
algorithm is mentioned, let us define a parametrized
function, F,(-), at a point x; by :

Fr(x) = max (%) - £°0x) - yv.(xp),

vi(x) - . (x), i€EM) )

where V.(x) = max (0, ¥(x)) and a steering parameter
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¥+> 0. Since the parametrized function F,(-:) is not
differentiable, computing an optimality function value
and a search direction vector is very difficult, To
simplify computations, let us define a linear first order
convex approximation of F,( -) by

Fo(2) = max ( £2(2) - %) + rv.(x),

h 3
vi(z) - wdx), jeM) @

where -,{(z) is the linear first order convex
approximation of W/(z) at a point x.and is defined by

¥i(2) = max vy, (97(x,5) (1)
+ <V (x,y), (z-%0)>+ (1/2) lz-x1I?).

Then, the optimality function value 0(x) and the search
direction vector h(x) can be defined by

8(x) = min he " F,(x+h) (5)
h(x) = arg min pepr F,(x+h) (6)

Polak and He [5] proposed a unified phase I-phase II
semi-infinite constrained optimization algorithm with a
steering parameter as follows:

Algorithm 1 [5]
Parameters: v> 0, «, pE(0, 1).

Data: xo€ER".
Step 0: Set i=0,
Step 1: Compute the optimality function value ;= 6(x;)
and the search direction vector h; = h(x;) using (8) and
(9), respectively.
Step 2: Compute the step size A; by

hi= max (B¥IKEN, F,(x;+p*h) < p*a8;) (7)
Step 3: Let X+ = x;+ Mjhi, replace i with {+ 1, and go
to STEP 1. n

Following results can be found in a reference [5].
Assumption 2.1 ~ Suppose that /(- DN
JEMp = {0} UM, satisfy that
(a) there exist 0<¢c <1< C< o such that for any
x, 2€R", and y€Y;, jEM, it is satisfied that

clizli* < <z, (32¢(x,9)/ 3x2> < Cll 22, (8)
(b) a set {x|w(x) <0} is not empty, | |

Theorem 2.2: Suppose that assumption 2.1 is satisfied,
{ xi}i=o is a sequence of vectors generated by Algorithm
1, and x* is the only solution of the problem (1), .Then,
(a) a sequence, { x;)izp, converges to x".
(b) for any £€(0, 1), there exists p > 0 such that
(i) if x;€B%x", p) for all {20, then there exists
81(e)€(0, 1), such that y(xju) < 81(e)wlxi).
(ii) if there exists an iy 2 0 such that w(x;) > 0 and
%EB%x*, p) for all i1y then it is satisfied
that %(xi) - ¥0(x) € 82() [¥*(x)) - ¥*(x*)] for some
52(£)E€ (0, 1).
Here, B%(x, p) is an openvball with a radius of p at a
center X, |

The first part of Theorem 2.2 implies that algorithm 1
finds an optimal solution and the second part deals with
the rate of convergence of the algorithm, '

3. The effect of a steering parameter and its
modification

In this section, the effect of a steering parameter is
analized and = rule on choosing a steering parameter is
given, Based on this analysis, a modified unified phase
1-phase Il optimization algorithm is proposed, ' ‘

Let us consider four cases based on a steering
parameter value and the location of a vector x;,

Case 1: Suppose that the value of a steering parameter is
large and at some point x;, all the constraints are

satisfied, Then, since a point x; is in a feasible
region and as a result V,(x;) = 0, the steering parameter

has no effect on the algorithm,
Case 2: Suppose that the value of a steering parameter is

large and at a point x; there exists a jEM such that
\Ui(x;) >0, i.e. some of the constraints are not
satisfied. In this case we have that wy.(x;) = v(x;) > 0.
Since v is large.‘ the value of yy.(x;) is large. Also,

since F(x;) =0, there exists an &> 0 such that for

all  x€B%x;, £), F(x) = max jep{v/(x) -welx)).

It implies that the search direction vector computed by
the equation (6) does not depend on the cost function.

Case 3: Suppose that the value of a steering parameter is
close to zero and at a point x; all the constraints are

satisfied. Then, by the same reason as case 1, Y does
not have any effect on generating a point xj.j.

Case 4: Suppose that the value of a steering parameter is
close to zero and at a point Xx;, there exists a jEM

such that w/(x;) > 0. If the value of ¥.(x;) is very
large, we have the same result as case 2 and if it is not
large, since the value of F,(x) in the neighbor of a
vector X; depends on both the cost function and the
constraint functions, the search direction vector h; is
affected by those functions. More specifically speaking,
when a point x; is far from the feasible region, it is
likely that Algorithm 1 generates a search direction that
leads the constraints towards the feasible region and
when a point Xx; is near the feasible region, it computes
a search direction that not only leads the constraints to

the feasible region but also leads, if possible, to an
optimal solution,

It is noted that when the value of Yy.(x) is large,
Algorithm I is not different from the original phase
I-phase 11 optimization algorithm, which implies that it
is possible to obtain a faster convergence if a proper
value of a steering parameter is chosen. Unfortunately,
there exist no rules on choosing a proper value of a
steering parameter since it is torally problem-dependent,
Here, let us propose a general rule that improves the
performance of the algorithm likely, but not always.
First, when a vector x; is far from the feasible region,

it is more efficient to pick a large value of vy since all
the constraints have to be satisfied, firstly, One
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drawback of choosing a large value of v is that a cost
function value may increase a lot. . More analysis on this
case will be followed later, Second, when a vector Xx; is
near the feasible region, it is better to choose a small
value of a steering parameter so that the cost function
is considered when a search direction vector h; is
calculated, Third, when a vector x; is in the feasible
region, Algorithm I 1is independent of the steering
parameter Y since we have that V.(x;) = 0. Lastly, when
a value of W(x;1) /w(x;) or w(xi+1) /w(xp) becomes small,
it implies that a sequence x;. Is close to the feasible
region compared to the point Xx; or the initial point,
respectively, Then, it may be efficient to decrease the
value of Y so that the cost function has more effect on
determining the search direction vector h;.

So far, we have analized effects of the steering
parameter based on the location of a vector Xxi. One

aspect we have to consider is the angle between the
search direction vector and the gradient of the cost

function at a point Xx; because if the angle is grater

than 90°, the search direction vector forces the cost
function value to increase, In this case, a steering
-parameter value should be decreased so that the cost
function is considered more in calculating a search
And if the angle is less than 90°,

‘then the search direction leads a next point xj not

direction vector,

only to the feasible region but also to an optimal
‘solution, Based on these analysis, we propose that the

steering parameter value is computed by 7;=T;e°™®
where T; is obtained by the analysis given in the
previous paragraph, c¢ is chosen by a user, and 8 is the
angle between the gradient of the cost function and the
search direction vector, Let us define a parametrized
function with a varing steering parameter as follow,
Fan(x) = max { ¥°(x) - v%(x:) ~ 7:9.(x),
Wix) - vix), jEM)
A modified unified phase I-phase I1I optimization

algorithm is presented below,
Algorithm I1:

Parameters:

(9)

O Tyin ST L Tymx < @,
p, 5€(0, 05), and ¢ > 0.

Data: xo€R".

Step 0: Set i =0,

Step 1: Compute the optimality function value 6; = 0(x;)

a, PE(O, 1),

and the search direction vector h; = h(x;).
Step 2: Compute the step size \; by- i
M= max (B*|Fay (xi + B¥0) < 8%a8i).  (10)

Step 3: Let Xxp = x; + Mihy.
Step 4: If y.(x1) =0 or both ¥.(x;1)/¥.(xp) < & and
¥.(xg) # O are satisfied, set Ty =Ty,
if  waxi) /i) <p, set Tisg= max { Tin, Ti - 01 =
min(To, 1)), and
otherwise, set T, = min { Tpay, Ti*+ Fo*0.1).
Step 5: Replace { with i+1 and go to step 1. ]

The parameter 8 in step 4 is the measure of how close
a vector X is to the feasible region compared to the

initial point. For example, when 5 =001, it implies
that if the value of W.(x;;) is within 1% of the
initial value wy.(xg), we can assume that the vector X
is very close to the feasible region. Then, since the
steering parameter has very little effect on the,
performance of the algorithm, the steering parameter
value is not changed, In this algorithm, the amount of
the change of a steering parameter value is arbitrarily
picked as a 10% of the previous value,
¥e have following results on convergence of the
algorithm,
Lemma 3.1: Suppose that assumption 2,1 is satisfied and
a sequence of vectors {x;)fio is generated by Algorithm
II. Then, for all i 20, we have that
WOxier) < W00 + viwa(xy), valxpg) < yalx). (11)
]
Theorem 3.2: Suppose that {x;)}izg is a sequence of

vectors generated by Algorithe Il and x° is an
accumulation point of the sequence. Then, we have that.
6(x") =0, i.e., when x;—x*, 8(x;)—0. |

4. Examples

In this section, Algorithm 1 and Algorithm II are
compared, Both algorithms are written in C-language and’
were run in SUN SPAC Il workstation.
Example 1: (Rozen-Suzuki problem [8])
following optimization problem,

min xf+x§+2x5+ x4 -5x-5x-20x5- Tx,

with 2ﬁ+x§+x§+2x1—xz—x4—550,
B+ b+ B vx-x2+x3-x,-8%50,
B2 +xd+2x-x-x-10<0.

Consider a

(12)

In this problem, all functions are convex and its minimum
occurs at (0, 1, 2, -1) and the minimum value of the
cost function is - 44,
(0,0,0,0), and an infeasible initial point,
(2, 4, 8, 1), are used. Variables used in Algorithm 1
are Tg=20, Tpi=03, Tom=40, c=10, «=07,
B=06, 858=001, and p = 005. For the feasible initial
point, since V.(x9) =0, Algorithm ] and Algorithm 11
generate the same sequence of vectors., The cost function
values versus iterations are shown in figure 1. Figures
2 and 3 are the value of the cost function and the
constraints versus iterations, respectively, with the
infeasible initial point. The computing time taken is
0.16 seconds for Algorithm I and 0.11 seconds for
Algorithm II,

A feasible initial point,

Example 2: (Wong problem [8]) Consider a following
optimization problem,
min (x-10)%+5(x; - 12)%+x3+3(x-11)2
+10x8 + 7x% + x4 - 4x6x7 - 10xg - 8x7,
with 2xf +3x+x3 +4xf + 5xs- 127 < 0, (13)
Tx1+3x2+ 10x3+ x4 - x5 - 282 < 0,
Bxy + x5 +6x%-8x7-1% < 0,
412{ +x§ -3x1x2+ ng* Sxg-11x7 < 0.
We note that all the constraint functions are convex but
the cost function is nonconvex. The optimal value is

680.63 at (233, 1.95, -048, 437, -062, 1.04,159). An
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infeasible initial point of (3,3,0,5,1, 3,0) is
The variables used in Algorithm II are Tg= 20,
Tmin =03, Tumx =40, and ¢ =20,
the cost and the

respectively,

used.

Figures 4 and S are
versus iterations,
The computing times are 0.47 seconds for
Algorithm I and 0.39 seconds for Algorithm II,
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Example 3: Consider a
optimization problem,

min X} +x}+ 54 (14)
with x; +Xge™' +e? - 2sin(4t) < 0, te[0, 11

following  semi-infinite

The minimum value for the problem is

(-0.1848, -1.3404, 1.8873). The
point (15, 15, 15) were used. Twenty-one equispaced
points were used to discretize the interval [0, 1],
Cost and Constraints versus iterations are shown in
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figure 6 and 7, respectively, The computing time taken
is 011 seconds for Algorithm 1 and 009 seconds for
Algorithm I1.
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Fig. 7. Constraint versus iteration plot with an
infeasible initial point.

5. Conclusion

In this paper, the effects of a steering parameter of
a unified phase I-phase Il semi-infinite optimization
algorithm are analized and a new a}gorithm is proposed,
It is more efficient that when a point x; is far from the
feasible region, a large value of a steering parameter is
chosen and when it is near the feasible region, a small
value is chosen so that the cost function is considered
in calculating the search direction vector, Also, it is
known that the angle between the gradient of the cost
function and the search direction vector has a great role
in determining the steering parameter value. Based on
these analysis, a modified unified phase I-phase 11
optimization algorithm is proposed, Even though we can
not claim that the new algorithm is better than the
previous algorithws for all problems, it is shown through
some examples that the proposed one is better than
others, W¥hen the user has more information on the
problem, it is possible to obtain better performance by
choosing proper parameter values.
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