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Abstract-There are great needs for checking machine op-
eration status precisely in the iron and stcel plants. Rotat-
ing machines such as pumps, compressors, and motors are the
most important objects in the plant maintenance. In this pa-
per hack-propagation neural network is utilized in diagnosing
rotating machines. Like the finger print or the voice print of hu-
man, the abnormal vibrations due to axis misalignment, shaft
bending, rotor unbalance, bolt loosening, and fanlts in gear and
bearing have their own spectra. Like the pattern recognition
technique, characteristic feature vectors arc obtained from the
power spectra of vibration signals. Then we apply the charac-
teristic feature vectors to a back propagation neural net for the
weight, training and pattern recognition.

l. INTRODUCTION

Considerable attention has been devoted in recent years to
the problem of fault detection and diagnosis in plants. Tn iron
and steel plants, there are many machines in tandem, thus a
failure in some of them will cause a serious trouble. There are
great needs for checking machine operation status precisely in
the iron and steel plants, because the equipments are very ex-
pensive and under harsh environments such as severe shocks,
vibration, heat, friction, dusts, etc. Furthermore, due to the
nature of stee] mill, the possible damage made by stopping the
process will make uncountable loss of money and time. Rotat-
ing machines such as pumps, compressors, and motors are the
most important objects in the plant maintenance.

From the viewpoint of preventive maintenance, a regular
check-up of equipment components by dismantling them when
the process is shut down, is one method that assists an accurate
diagnosis. But between regular check-ups, or if the process can-
not be stopped, on-line quantitative diagnosis of the operating
process is desirable.

In this experiment, we utilize a back-propagation neural
network in the ou-line diagnosis of rotating machine. Figure 1
is a block diagram of the diagnosis system. Like the finger
print or the voice print of human, the vibration caused by any
fault in some parts of a machine carries its characteristic fea-
ture. Specifically, the abnormal vibrations due to axis mis-
alignment, shaft bending, rotor unbalance, bolt Ioosenving, and
fanlts in gear and bearing, have their own spectrum. We utilize
the power spectrum in extracting characteristic feature vectors
from the abnormal vibration like the pattern recognition tech-
nique. That is, the power spectrum of an abnormal vibration
caused by each fault source is coded as its characteristic fea-
ture vector. Then, feature vectors are used in the neural net’s
weight training and recognition. We also test the performance
of the trained ncural net in recognizing the causes of vibrations.
For this experiment, we made a vibration test bench in such a
way that artificial faults could be made casily.
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Figure I: Diagnosis system block diagram

fI. VIBRATIONS IN ROTATING EQUIPMENT

Vibrations occur in elastic systems that generally consist
of one or more masses connected to cach other or to a fixed
member by springs. A vibration is the motion of a body or
system that is repeated after a given interval of time known as
the period. The number of cycles of motion per unit of time is
cailed the frequency.

Vibration monitoring is based on the principle that all sys-
tems prodnce vibration. The usual effect of excess vibration
is premature wear of components such as bearings, gears, and
conplings. Rather than attack the impossible problem of elim-
inating vibration, we propose to show how the proper interpre-
tation of vibration data can be used to monitor the condition
of operating mechanical equipment and lead to reductions in
downtime and maintenance costs. When a machine is oper-
ating properly, vibration level is low and constant. However,
when faults develop in the machine, the vibratory responses
reflect them and their spectra also are changed. In many ma-
chines, vibration spectrum has a characteristic shape when the
machine is operating properly, and it has.other characteristic
features for diflerent faults. Diagnosis can be effectively per-
formed by careful examination of the features associated with
particular fanlts and their identification.

We can classify the sources of machine failures according
to frequency range of their vibration. In the low frequency
range (0 ~ 5f., f. : rotating frequency of a machine), rotor
itnbalance, axis misalignment, axis bending, loose bolts are the
major sources of abnormal vibration. In the mid frequency
range(5f, ~ 1klz), abnormalities of gears are detected. And
in the high frequency range( above 1kllz), the abnormalities of
hearings are detected. These are shown in Tabhle 1,

Unbalance is the mnost frequent faults in a rotating ma-
chine. Rotor unbalance is characterized by vibralion at the
runuing {requency f; and vibration occurs in the radial direc-
tion. Vibration due to misalignment is characterized by a peak
at two times the running speed of the component. If there is
a loosening of a mounting bolt of a rotating machine with fre-
quency, fr, the harmonics—2f,, 3 f,— are generated along with
the subharmonics— 1/2f,,1/3 f,— in its power spectrum of the
vibration.
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Frequency Fanlts Running Vibration
Range Frequency(f,) | Direction
Low Rotor Jo radial

unbalance

Axis 2fo, 3fo axial

misalignment

Shaft 2fo, 3fo axial

bending

Bolt, /3%, 1/2fs, radial

loosening Jo, 2fo

Oil whip (0.4 ~ 0.45) fy radial
Middle Gear faults 5f, ~1kllz radial or

thrust

High Bearing 1kilz ~ radial or

faults thrust

Table 1: fanlt types and running frequency

The fundamental frequency component in the vibration of
gears is the mesh frequency of the teeth of the gear. f,, can be
calenlated by the following equation,

f,,.:Z;x%:ng%llz (1
where, 7,,Z; are the number of teelh of each gear and Ny, N,
represent rotational frequency of each gear in r.pan. I there
are faults in gear such as crack, frequency components f,, +
nfr and 2f,3fm, -, grow larger and larger besides the mesh
frequency fr.

Faults in the bearing can be classified into three categories,
Le. ,inner race defects, outer race defects, and ball defects. The
structure of a ball bearing is shown in Figure 2. When there
are faults in bearings, as the balls pass through the defective
spot in the inner race or outer race, or as the hall with a defect
rolls between the inner and outer races, periodic impulses are
generated. And that impulses make the bearing vibrate in its
natural frequency {called also ringing frequency) modulated by
pass frequency at which the iipulses are generated. Typically,
the natural frequency or ringing frequency of the bearing is
above 1 kilz.

For each type of faults in a bearing pass frequency can be
calcnlated as follows.

e inuer race defect

Zf, d
fi= S+ 5 cosa) )
s outer race defect
Zf d
Jo==~(1~ 5cosa) 3

e ball defect 2
D, d
= d (I—DTCOSZ CY) (’1)

Jo

wlhere, Z is the number of balls in the bearing, f, is rotatling

frequency, D is the diamcter of the pitch circle, and o is the

conlact angle in radian.

In order to generate signals from various abnormalitics, a
test bench is made as shown in Figure 3. In the left end a
three-phase induction motor of 5.5kW lies which is powered by
an inverter, and in the right end a generator lies which is used
for aload. In the motor side, there is a fly wheel of about 13kg
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Figure 2: Structnre of a ball hearing.

Figure 3: The test bench used in this experiment.

with 16 holes which are made for casy attachment and removal
of the payloads in making unbalances. A gear box lies in the
generator side for the monitoring of the faulty gear signals.

Il. SicNAL PROCESSING

In order to get vibration signals from the machine, there
must be a vibration sensor. There are various vibration sen-
sors such as eddy current probe for position, moving element
for velocity, and accelerometer for acceleration. In this ex-
periment we use piezoelectric accelerometer. Accelerometers
are a popular transducer for vibration measurements and also
to record earthquakes. The main advantages of the piezoelec-
tric accelerometer are compactness, ruggedness, good tempera-
ture resistance, high sensitivity, and high frequency range. Al-
though accelerometers, hower, provide an excellent mechanism
for collecting vibration data, they are also highly sensitive to
noise. So, the use of piezoelectric accelerometer requires cau-
tious treatments. In this experiment, Piezoelectric accelerome-
ter (PA-01) was used to detect the vibration of a machine. Its
sensitivity is 50mV/g and the frequency range is 3 ~ 7500 H z.

The signal processing schemes are different depending on
the vibration {requency range. In studying abnormality in the
low frequency and gear diagnosis, the velocity signal, i.e. inte-
gral of the acceleration signal, is used in the diagnosis of faults.
The acceleration sensor is connected to an amplifier specially
designed for low noise cable. In order to eliminate the possi-
ble DC component which can be caused by an offset voltage
in OP amps, we make use of a high-pass filter. Then, we get
a velocity of the vibration by integraling after filtering. In
order to avoid aliasing due to high frequency components, a
low-pass filter with the cut-off frequency of 1kIlz is used hefore
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Figure 4: Block diagram of low frequency signal processing.

sampling. The output signal of the low-pass filter is fed into
a ADC whose data bits are connected to a 486DX PC data
bus. Figure 4 shows the block diagram of low frequency signal
processing scheme.

Sampling [requency for the low [reqitency range diagnosis
was chosen at 1 ~ 2kHz and the number of sampled data is
6144. Then, we divide the sarapled data into 2 segments. Each
segment has 4096 data and overlaps with the nearby ones hy
one half of its length.

Then each set(segment) of 1096 data is muitiplied by Welch
window and transformed into frequency domain by FFT, i.e.,

N-1

2 w(i)e(z)e* N,

j=0

Dik)

k=0,...,N-1 (5)

—~0.5(N — 2
1- (1———&&——2) = "WelchWindow”, (6)

(i) 05(N + 1)

where, N = 4096 in this experiment and c(i),1 < i < N,
denotes the time-domain data in a segment. Also, the power
spectrum is obtained by

L
PO) = (DO

1 N
P = g (DG + 1Dl k=120, (F - 1)
py Ly
(2) W, (2

where, W,, stands for window squared and summed, W,, =
N E?’:o 'U(j)z-

After obtaining 2 sets of power spectra, average them out,
and we denote the averaged power spectrum by P(0), P(1),
-+, P(2048). For a given sampled data, this kind of over-
lapping method is known to give a smaller variance than the
nonoverlapping method[2].

As mentioned, when a bearing has somne faults, ringing fre-
quency is modulated by pass frequency that carries inforination
about fanlts. So, demodulation process is necessary in signal
processing. Vibration signal from bearing is collected by using
an accelerometer placed in the radial direction to the loading
of the bearing. The accelerometer is serewed onto a flange, and
the flange, in turn, is stuck to the rolling element. Then, these

dala are fed into band-pass filter, which cuts off below 1 kliz
and above 10 kllz. Those cut-ofl frequencies are chosen, be-
canse ringing frequency is above 1 kllz, and principle mode of
vibralion, mode 2 or mode 3 is below 10 kllz. In case of the
bearing tested in this experiment, vibration frequency of mode
2 and 3 are 2.122 and 6.002 klz, respectively. Following the
band-pass filter there are absolute value circuit and envelope
detector. This final output is used as input to the ADC. Data
for hearing are sampled at 3 kllz and the nwmber of data is
6144. The next is the same procedure as the low [requency

range. [igure 5 shows this processing scheme.
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igure 5: Block diagram of high frequency signal processing.

IV. FEATURE EXTRACTION AND DiagNoOSIS

A. Feature eztraction

Aflter obtaining the power spectrum ol vibration signal, we
should make it adequate for the input into the neural net. If the
number ol input nodes are too large, training is too slow to use
in practice. The power spectrum may contain redundant data
which have no useful information in the diagnosis. One method
for reducing input data size is to use recirculation network as
in [6]. But if we use that network for data compression in this
case, the number of nodes in input layer becomes 2048, too
large for nuse. Here we discuss different method that uses fea-
ture extraction for the smaller input space using the knowledge
of vibration characteristics of the machine. As operating condi-
tion such as rotor speed changes the power spectrum varies, so
we should make feature vector independent of operating con-
dition. Tn order to do this task, [requency normalization and
magnitude normalization are used here. Because the vibration
spectrum varies proportional to the rotating speed of the ma-
chine, frequency normalization is achieved by dividing power
spectrum by the frequency of the rotating speed of the ma-
chine, f,.

In the low frequency range we know that f,,2f,, and 3f,
[requency components are very sensitive to the faults such as
misalignment, unbalance, bolt loosening, and so on(see Fig-
ure 8-10). We use these components and their neighborhood
as the feature vector in the low frequency range. This is done hy
multiplying three Hanning window with width of 2/5,, height
of 1, and center of each at f,,2f,, and 3., respectively, and
then add them to make three-dimensional vector. The forth
element is nsed to discriminate between signatures with vibra-
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tion levels considered normal and signatures of possibly lanlty
components. This can be done by comparing power of the char-
acteristic frequency with that of the other frequency range. The
value of this element is binary, a one indicates absence of a fault
and a zero indicates a possibly faulty signature. This vector is
normalized in magnitnde to unit length in Euclidean norm.

When there are fanlts in bearing, the frequency components
sich as fi, fo, fo, become dominant. Lor example, when a bear-
ing has fault in inner race, {requency component at f; grows
large. Thus we extract feature from frequency components f;
nsing Hanning window with width 2/5f,. This procedure is
done also with f, and fy. Like the method in the low frequency
range, the forth element of the feature vector is the ratio of the
energy of the fault frequency to that of the others. The vector
which has four components is normalized to unit length and
this vector is used as the input vector of the ncural network for
the beariug diagnosis.

Tn the diagnosis of gear fanlts, the mesh frequency of the
gear becomes very important clue. As mentioned previously, if
there are faults in gear element, the frequency components fn
and its side bands f,, £ nf, become larger than that of normal
operation, especially the side bands (See Figure 11-12). Thus
we use fn & nf,, n = 0,1,3,4, components as feature vector
components. And this vector is normalized to unit leugth,

B. Diagnosis using BPN

In this experiment we use back propagation neural network
for diagnosis. Diagnosis scheme is shown in T'ignre 6. The fea-
ture vector is used as the input to the BPN to identify which
fault has occurred. Three BPN’s are used in the diagnosis and
each neural network is trained for low frequency range diagno-
sis, the gear diagnosis, and the bearing diagnosis, respectively.
The structure of the three BPN’s have similar form in Figure 7.
The BPN used for low frequency range diagnosis and the bear-
ing diagnosis has 4 input nodes, 6 nodes for each hidden layer,
and 4 output nodes. The BPN used for the gear diagnosis has
5 input nodes, 6 nodes for first hidden layer, 5 nodes for second
hidden layer, and 2 output nodes. The nonlinear function used
in each node is the standard sigmoidal function.

The BPN for the low frequency range diagnosis can identily
4 different faults; normal(N), unbalance(U), misalignment(M),
and bolt loosening(3). The BPN for the gear diagnosis identifies
normal operation(N) and gear faults(F). The BPN for bearing
diagnosis identifies normal(N), inner race fault(I), outer race
fanlt(0), and defect in ball(B).

V. TesT RESULTS

Diagnosis nsing BI’N was performed by using the test bench
in Figure 3. Bearings’ type number under test is 600877 and
the paramecters are in Table 2. These parameters can be fonund
easily in the manual of the machine and must be entered by hu-
man operator to diagnose the bearing. Using those parameters
in equations (2) - (4), we get pass frequencies f; = 6.82876f,,
fo = 5.17124f,, and f = 6.67335f,. To diagnose machine, we
st measure or estimate the rotational frequency fr. f; can
be estimated by measuring peak amplitude in the spectrum in
an appropriate range as in [10]. In this case frequency resolu-
tion must be fine enough for the accurate estimation of f, such
that no faulty diagnosis should be made. In the low frequency
range diagnosis, the resolution of the spectrum is about 0.2511z.
Furthermore, this technique requires f, component is actually
the peak component in the interested range. This is not sat-
isfied in all cases. So we use encoder for f, measurement by
attaching on the one end of the rotor. The training of the BPN
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Figure 6: Block diagram of diagnosis scheme.

Figure 7: Structure of the BPN used in diagnosis.

Parameter D d Z| «a
Value 54 mm | 7.9375 mm | 12 | 20°

Table 2: Parameters of the tested bearing(6008Z7).

was performed such that only one output node could produce 1
and the others 0 according to each fault and standard gradient
decent learning rule algorithm with momentum was used. The
ontput vectors for training in low frequency range diagnosis is
shown in table 3 and output vectors for the other diagnoses are -
defined in similar way. As the training data set, we used vibra-
tion signals from the test bench by operating normally and by
changing fanlty components. The training data was classified
correctly in the diagnosis, and is not included in the calculation
of accurate diagnosis rate.

Fault type Output vector
Normal | (0.97, 0.03, 0.03, 0.03)
Unbalance | (0.03, 0.97, 0.03, 0.03)

Misalignment | (0.03, 0.03, 0.97, 0.03)

Table 3: Desired output vectors of the BPN for low {requency
diagnosis.
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We have applied tlie minimum distance rule to the nenral
net outputs in determining the fault occurred, i.c., we measure
the distance between a neural net ontput and the four desired
output vectors, and delermine one as the corresponding result. if
the distance is the smallest. In low lrequency range, we trained
neural network to diagnosis normal, unbalance, and misalign-
ment operation and obtained 100% accurate result. In gear
diagnosis, we diagnosed normal or fault and the result is about
70% accuracy. In bearing diagnosis, we diagnosed normal or
inner race defect and the result is 100% accuracy.

[Migures [rom 8 to 12 show power spectrum of each operating
mode used in this experiment. The test data were collected
in the condition of various rotating [requency and in the low
{requency range diagnosis test, the severity of the fault was also
altered.
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Figure 8: Power spectrum of normal operation in the low fre-
quency range.
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Figure 9: Power spectrum of unbalance in the low frequency
range.
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Figure 10: Power spectrum of misalignment in the low fre-
quency range.

1.0c06
7.5¢-07]
5.0e-07]
2.5¢-07]
LR TR VR W B DU T .
630, 113,

Iligure 11: Power spectrum of normal operation of gear.
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Figure 12: Power spectrum of faulty gear.

VI. CONCLUDING REMARKS

In this work, a neural-network-hased methodology for de-
veloping fault diagnosis system for rotating machines was con-
sidered. In low frequency rage, we extracted feature vectors
from the vibration signals due to rotor unbalance and axis nis-
alignment and trained the-BPN using these vectors. Then we
extracted feature from arbitrary vibration signals and applied
it to the trained neural network to diagnose the rotating ma-
chine. In similar way, we discriminated faults in bearing and
gear. Although we used the data collected from the test bench
to generate data that were used in training, it is also possible
to use simulation data to train the network with the help of
a priori knowledge of vibration characteristics. There necds
more work in order to handle the complex abnormalities which
aTe more common in the real situation, i.e., the abnormalities
which are caused by more than oue trouble.
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