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Abstract A method for obtaining Volterra kernels of
a nonlinear system by use of pseudorandom M-sequences
and correlation techuique, proposed by the authors in 1993,
is further analysed and some applications for identifying
nonlinear system having feedback loop are shown.

1 Introduction

Although the identification methods for linear system have
heen developed by many researchers, the methods for non-
linear system identification are quite few. The reason is
thal noulinear systems are complex and diflicult to be treated
in general.

The authors(Iashiwagi et al, 1993a,1993b, 1994a) proposed
a new method for obtaining not only the linear impulse
response, but also Volterra kernels of nonlinear system si-
multaneously. A pseudorandom M-sequence, specially cho-
sen beforehand, is applied to the nonlinear system, and the
crosscorrelation function between the input and the output
is calculated. Then the linear impulse response together
with several crosssections of the Volterra kernels are ob-
tained. This method for obtaining Volterra kernels of non-
linear system is further analysed and some applications to
actual nonlinear system having fecdback loop are shown.

2 Principle of the method

A nonlinear dynamical system is, in general, described as
follows.

w0=5 [ [ [Cat )

xu(l —m)u(t — ) u(t — 1)dndry - - dr; )

where u(t) is the input, and y(2) is the output of the non-
linear system, and g;(7,7s,...) is called Volterra kernel of
i-th order.

When we take the crosscorrelation function between the
input u(t) and the output y(¢), we have,

buy(T) = u(t — 1)y()
=g/ﬂm/(]mm/omg.-(ﬁ,rz,---r.-)

xu(t ~ tiu(t —n) - w(l —m)drdry---dn;

(2)

where ¢y, (7) is the crosscorrelation function of u(t) and
y(t) and denotes time average.

The difficulty of obtaining g;(r1,72,- - ;) from ¢é,,(7) is ,
in general, due to the difficulty of getting (i + 1)th moment
of the input u(t), because the n-th moment of the signal is
very difficult to obtain for actual signals.

When we use an M-sequence as an input to the system, the
n-th moment of u(t) can be easily obtained by use of so-
called "shift and add property” of the M-sequence. So we
can obtain the Volterra kernels ¢i(7i, 72, - - 1) from simply
measuring the crosscorrelation function between the input
and output of the nonlinear system.

The (i + 1)th moment of the input M-sequence u(t) can be
written as

u(l =T u(t — r)u(t —79) - u(t — =)
1 (for certain 7)

=1 ~1/N (otherwise) (3)

where N is the period of the M-sequence. When we use
the M-sequence with the degree greater than 10, 1/N is
smaller than 1073, So Eqn.(3) can be approximated as a
set of impulses which appear at certain 7’s.

Eqn.(3) is due to the so-called shift and add property of
the M-sequence; that is, for any integer k,(]j),kg), y kf;?_l
(suppose kY < kg) < eeny

k9 (modN) such that

kii(7)), there exists a unique

w(t)u(t + K )u(t + k3) -t + £ ) = (@ + £) (4)

where j is the number of a group (ki kiz, -, ki) for
which Eqn.(4) holds. We assume that tolal number of those
groups is ny(that is, j = 1,2,---,m;). Note that when
k,(f)(r = 1,2,...1) satisly Eqn.(4), then 2”k§f) also satisfy
Eqn.(4) for any integer p. Therefore Equ.(3) becomes unity
when

n=r—km=r—k,n=r—k) (5
Therefore Eqn.(2) becomes
0o my . : .
(1) 2 33 air — K r — kR =KD (6)
=1 j=1
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- 7;) 18 zero when any of 7; is smaller than
zero, each g;(r - kf{),r - kg), R kff)) in Eqn.(6) ap-
pear in the crosscorrelation function ¢,,(r) when 7 > l.',(f).

Since gi(ry, 7,

1f the kff) of i-th Volterra kernel g; are sufficiently apart
from cach other(say, more than 50At, where Al is the
time increment of the measurement time), we can obtain
each Volterra kernel g:(7 — k,(-f), T— kg),~ N
BEqn.{6). Volterra kernels g;(7y, 15, - 7;) are obtained as a
sel ol crosssections along 45 degree lines in (7,7, ,7)
space. In order for Lhis lo be realized, we have to se-
lect snitable M-sequence{As for the selection of M-sequence
suitable for obtaining Volterra kernels, see Table 1 of the
reference(Kashiwagi, 1994a).

3 Measurement of Volterra ker-
nels up to 3rd order

An example of obtaining Volterra kernels by this method
is shown here. A

(1) (1) . Lo

— g(t) 422428

Figure 1: A nonlinear system having up to 3rd Volterra
kernels.

The system to be identified is assumed to have up to third
Volterra kernel which is actually realized as shown in Fig.1,
where g(t) is the impulse response of the linear part of the
system.

Then the output y(t) can be written as

() = 20+ 20+ 20) 2
= /O g(m)u(t — r)dm + { A g(m)u(t — 'rl)d'r.}

+ {/(»)wg(ﬂ)“(t - Tl)dﬁ}
/U  g(m)ult — m)dn,
+/°° /oo (11)g(m2)u(t — 1)u(t — m)dridn,

[ sttt

xu(t — 7 )u(t — ‘rg)u(l — 73) dr drdTs (7

Therefore Volterra kernels are as follows in this case.

a1(m) = g{m1)
g2(m1,72) = g(11)g(72)
93(T1»7277'3) =!](71)9(T2)9(7'3) (8)

When we take the crosscorrelation function between u(l)
and y(t), we have

dulr) = [l = TRl =
+ /000/00092(“’ m)u(t ~ Tiu(t — mju(t — r3)drdr,

- kff)) from -

Lo o s <l o o)
// / g3(71, 79, T3)
0Jo Jo

X u(t — Thu(t — r)ult — m)u(t — r3)drdrdrs (9)

The first term in Bqn.(9) becomes,

/Oqfq](rl)u(t —7)u(t — 7 )dn

1 00
= —V gl(T])(]T]

[ ot B
~ Atg,(7) (10)

The second term in Eqn.(9) is,

/m/mgz(rl,‘r;)u(t — tu(l — m)u(l — 7y)drydry
Jo Jo

] 20p00
_‘—//92(T|,T2)fl‘rldT2
a
m2 Ly k("+Al/r—k(2]2)+Al

+2 Z/r kK2t

i
{¢uuu -1, T—T) + N} drdr,

K g2(T1,72)

2AL)? Zgz(r—kg,’,r-ﬂ”) (11)

where ¢,,.() is the third order correlation function of u(r).
In the same way, the third term in Eqn.(9) becomes,

oQr00 POO
///.‘h(ﬁyhﬁs)
0Jo Jo

xu(l — 7)u(t — m)u(t — n)u(t — r3)dridrdr

N
~2(ALYga(7,7,7) + 3(AL)* Y g5(7, ,9)

g=1

(ALY ga(r — k) =k, T — kYY) (12)
j=1

Therefore Eqn.(9) becomes

$uy(7) = Dtg(7) + (At)ga(7,7,7)
+3(A8)° 3~ 95(7,4,9)

9=1
ISP T )

j 1

6(At) ng(r — k9 - KT — kD) (13)

In general case, we have,

Puy(T) = Algi(7) + F(7)
+ LAy S — KD~ KD k)
=2 i=1

(14)

Here the function f(7) is the swu of the odd order Volterra
kernels when some of its argument are equal.
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When we use the M-sequence having the characteristic
polynowial of f(z) = 207247(in octal notation, 16 degree),
ki;’s in Eqn.(4) are

ka1 = 655, kyz = 658, kay = T35, kap = 738, ksz = 741
Therefore

Buy(T) Alg(T) + F(7) + 2(At)%g(r — 655, 7 — 658)

+ 6(At)’ga(r — 735,7 — 738, 7 — T41) + - --(15)

Fig. 4 shows an example of the simulation results, when
the linear part of the system is of second order with { =
0.3,w, = 1.0, where ¢ is the damping ratio"and w, is the
natural angular frequency. The linear impulse response
is clearly seen for 7 < 100, and the 2nd Volterra kernel
g2(7 — 655, 7 — 658) is obtained from 658 < r < 710 and
also ga(r — 735, 7 — 758, 7 —741) is obtained from 735 < 7 <
770. In Fig. 4 , o indicate the simulation result and solid
line shows the theoretical result, showing a good agreenent
with each other. '

4 Applications

This method of Volterra kernel identification is applied to
several actual nonlinear systems. The first one of the ap-
plication is to a nonlinear system having relay type non-
linearity with dead band as shown in Fig.2. Fig.5 shows
the comparison of the actual output(solid line) and the es-
timated output(denoted as o ) which was calculated by use
of the measured Volterra kernel.

() LT 2| v
+7-1 | | 0.3 s +2

Figure 2: A nonlinear system having relay type with dead
band

u(t) 2 e(t) y(t)
T Ts12 tanh(2e)

Figure 3: A nonlinear system having tanh-type nonlinear-
ity

Second application of this method is to a nonlinear system
having tanh-type nonlinearity with feedback loop as shown
in Fig.3.

Fig.6 shows the comparison of the actual output and the
estimated output. We see a good agreement between them,
showing the validity of the method for nonlinear identifi-
cation.

5 Conclusion

A method for obtaining Volterra kernel of nonlinear sys-
tem by use of pséudorandom M-sequence(Kashiwagi 1993a,
1993b, 1994a) is further analysed. A specially chosen M-
sequence is applied to Lhe nonlinear system to be identified,
and the crosscorrelation function between the inpul and
the output gives us not only the linear impulse response
of the linear portion of the system, but also some crosssec-
tions of the Volterra kernel g;(r1, 7, -+ 7;) along some 45
degree lines in (1, 79, - - ;) space.

This method for obtaining Volterra kernel is simulated on
the computer for nonlinear systems having up to third or-
der Volterra kernels. And the method is applied to some ac-
tual nonlinear system having dead band type nonlinear ele-
ment with feedback loop.The results show that this method
is effective for nonlinear system identification.
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Figure 4: An example of the simulation results showing the crosscorrelation function
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Figure 5: Comparison of the actual output with the estimated one for Figure 2.
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Figure 6: Comparison of the actual output with the estimated one for Figure 3.
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