'94 KACC (1994.10.17 ~20)

Robust Fault Detection and Diagnosis
in Boiler Systems

Yu - Soong Kim*, Oh - Kyu Kwon*° and Il - Sun Hong**

* Dept. of Electrical Engineering, Inha University, Inchon 402-751, Korea.

** Agency for Defence Development, Daejeon 300-600, Korea.

ABSTRACT

This paper gives a general survey of model-based fault
dctection and diagnosis methods. Specific applications
of thesc idcas to boiler systems will also be discussed.
A novel aspect of the fault detection technique described
here is that it explicitly accounts for the effects of using
simplificd modcls and crrors from lincarizing a nonlinear
systcm at an operation point. Inclusion of these effccts
is shown to lead to novel fault detection procedures which
outperform existing methods when applied to typical fault
scenarios in boiler systems.,

1. INTRODUCTION

A fault may be defined as an abnormal change in the
characteristics of a system which gives rise to undesirable
performance. The diagnostic tasks can be classified into
three componcnts (Basseville, 1988; Frank, 1987,
Iscrmann, 1984), namely

- fault detection — ic. making a binary decision
between fault and no fault;

— fault diagnosis — i.e. isolation the source of the
fault; and

— failure evaluation — i.e. characterising the cxtent
and significance of the failure.

Typical faults that can occur in boiler systems include
fucl nozzle clogging, pump fault, lcaking, coking, valve
fault, turbine blade fault, sensor fault, actuator fault and
controller fault. Clearly accurate dctection and diagnosis
of thesc faults has a significant bearing on minimizing
the risk of catastrophic failures or on reducing
maintcnance costs (Yoon, 1993).

Two rclated approachcs can be used for fault detection,

namely, physical redundancy and analytical redundancy.
The idea with physical redundancy is to use additional
scnsors to make independent measurements of the same
paramcter. In this way, sensor problems can be isolated
by using a systcm of majority voting. The altcrnative
is to use analytical redundancy where a model is used
to interrclate two or more of the measured variables and
the model parameters are then monitored to determine the
influence of any faults. 1If a fault condition exists then
significant departurcs from the modcl can be expected.
In boiler systems, models can be used to rclate various
control input variables to various outputs. For example,
changes in inputs, such as fuel flow and valve gcometry,
can be related to changes in the outputs typically, drum
water level and pressures and temperatures throughout the
stcam wall,

The idca with analytic fault dctection is to critica"y
examine the model used to interrclate the measured
variables. Under fault-frce conditions, estimates of the
model parameters can be made along with the cxpected
variation in the paramecters due to inaccuracies in the
modeclling process. Typical inaccuracies include effects
of undcr-modelling (where a simplificd model is used for
convenience to approximate the real system), linearization
errors and measurement noise. If over a period of time,
the new estimatcs of the model paramcters fall outside
the expected fault-free range then a suspected fault
condition cxists, The particular way in which the
estimated paramcters vary from the nominal fault-free
valucs will definc a fault signaturc. This in turn can be
used as an aid in diagnosing the causc of the suspected
fault.

The key ingredicnt in an analytical redundancy approach
is the mathematical model used to interrclate the
measurcd variables. A typical modcl for a drum-type
boiler can have up to fourtcen inputs and outputs with
fourtecn or more statc variables. In addition, a non-lincar
model is usually rcquired to describe the complex mass,
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encrgy and thermodynamic relationships over the full
power range of a boiler system. Thus, to gain insight
into the fault detection problem it is generally desirable
to simplify the cquations to something more manageable.
Typically, lincar models of order two or three arc
cmployed containing onc or two inputs and outputs. The
structure and the number of paramcters to be used in these
simplificd models may depend on the operation
conditions, for example, the most suitable model at part

power may differ from that required at high power
scttings.

Some indication of the difficulty involved in diagnosing
faults from transicnt data can be seen from the following
example. The stecady state performance of a boiler can
be dcfined within fairly close tolerances for a given
opcration condition.
variables is minimized by allowing the boiler to stabilisc
for long cnough to reduce bulk temperaturc cffects and
averaging the mcasurcments over a rcasonable sampling
period. However, results obtaincd from transicnt
responscs for the same boiler do not produce a similar
characteristic curve but exhibit different profiles for cach
transicnt depending on the ambient conditions and the
operating technique used. This is not surprising because
of the increased cffect of the changes in bulk temperature
on the transient bchaviour compared to that of the
stcady-state.  Furthcrnmore, the effect of measurement
noisc in the transicnt casc cannot be so easily filtered
as in the steady-state case. Thus, it is important that the
fault detection procedures are capable of distinguishing
between  model - changes  resulting  from  non-faulty
conditions, such as changes in ambicnt conditions and/or
operation procedures, and those introduced by faults.

The uncertainty in the mcasurcd

2. SYSTEM DESCRIPTION AND PARAMETER
ESTIMATION PROCEDURE

The basic premise of this paper is that all mathematical
models are only approximatc description of rcal systems.
As alluded previously, the major sources of modelling
crrors are measurcment noise, undcrmodelling and
lincarization errors. Thus the model mismatch can be
represcnted by the following system description based on
a Taylor scrics cxpansion of input-output rclationship:

MR = G(a" ) u(k) + GLa ") lk)
+ Goaa ™Y1 k) signCulk)) + vk) (2.1)

where ¢7! denotes the backward shift operator, G is the
nominal model, G, and G,; denote the mismatched
models due to undcrmodelling and lincarization crror,

respectively, and ¢ is the mcasurement noise.  This
system description is depicted by Fig. 1.

u?sign(u)

Measurement
noisc v

u
lnpuf————‘ Output

Fig. 1.

System description.

The expansion given in (2.1) can be justified either in
terms of lincarization about an opcration point or via a
in  which the
nonlincayity is represented as a static clement on the input
side (Ljung, 1987).

description of a nonlincar  system

We assume that G, G, and G,, arc stablec and causal
and that o is zero-mcan whitc noise with variancc ¢,%

The nominal modecl is taken to be:

B(Zﬁl , 0,N1])

-1 _
G(z',8) = -_—_T—F(z’ N

(2.2)

where F(z™,Np) is a predetermined denominator and

B(z7',6,Np) = bzl + bz 2 4+ by

Fa ' \Np) = 1+ iz + frz Pt + 2"

6= 1b by byt T.

The denominator F(z', Ni-) can be determined from a
priori information about the system, c.g., approximate
valucs of dominant poles or by some prior cstimation
experiments on the system. Note that any lincar stable
system can be always approximated by thc nominal model
(2.1) by adjusting the orders Npand N, Basically, errors

in the dcnominator polynomial are corrected by
adjustments to the numerator polynomial.

Using the systcm description (2.1), the systcm output has
the following form:

y(B = B(a™", 6, Np)up(k) + (k) , (2.3
where
wp(k) = —F(-;,—l,—m )
2B = Gala V1 k) + Goala ") 1 k) ssign(a k)) + v(k) .
(2.4)

Using (2.4) and denoting the impulse response of G, and

Gng 88 {A(-)} and {h,(-)), rcspectively, 5(k) can be
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expressed as

N1
wk) = .};o h(i) 1(k—1)

+ Ig]:h,,(i):zz(k—i)st'gn(r;(k—t')) +uk), (25

where it has becen assumed that (k) = (0 for £<0Q,
MR = h,(k =0 for £C0, A(-)and h,(-) have the finite

duration N, and N," , respectively.

Eq. (2.3) can be represented in standard lincar regression
form as

¥(B) = T(DO+ (k) , (2.6)

where
$(B) = Lap(k—1) 1ep(k=2) - 10p(k—=Np)1 7.

We dcefine the cstimated parameter using ordinary least
squarcs as

0 = arg min 3 [ WB—Bla", 6, Noudh ],

k=1

(VA

where Nis the number of data available. Notc that (2.7)
corresponds to output error minimization. However, the

ordinary lcast squares method can be uscd to solve this
problecm duc to the special form of the representation
2.2). Equation (2.3) and (2.5) can bc rewritten
compactly as follows

Y=00+S5, (2.8)

where

S=UH+TH,+V

Y = 13(1) %(2) - »(N) )
u(0)  u—1)
0 = ne(1) 1ur{0)

1/,.-(1&/-1) 1IF(N—2) th(N;Nn)

. up(l _Nlj)
: "F(z _Nn)

w(l) 0 - 0
v | 2 u(.l) 0

u(:]V) 14(1\;-1) II(N—:N).+1)

W’l 1=
w{(1sign(u (1)) ] [
W (D)signl w(2))

W Dsign(u(1)) - 0
(Msign(u(N) w(N-DsignGlN-1)) =+ " (N— N"+ Dsin(u(N— N"+1))

H = 1R(0) h(1) - A(N,~D1 7
Hoy= [ ha00) B (1) - B (NF-D1 T
Voel(l) o) - o) T,

The nominal parameter vector @ can be estimated by the
ordinary linear least squares mcthod as follows:

Gd=(070) '07Y. (2.9)

From (2.8) and (2.9) we can derive the following
expression for the estimation error:

§=8-6=(0"0)'07S. (2.10)

Before we can proceed we need to say something about
the unmodelled impulse responses (A(-)} and (h,()).
It would not make scnsc to assume these were known

since thcy would then hardly qualify as being
unmodellecd dynamics. We overcome this dilemma by

adopting a Baycsian point of view. Wc assume that a
priori knowledge is available which allows us to givc a
prior distribution to {A(-)} and (4,(-)). This procedure
is discusscd in dctail in (Goodwin and Salgado, 1989)
where the term  ‘Stochastic Embedding’ is uscd to
describe the procedure of giving an a priori distribution
to {k(:)}. For our purposcs hecre, we will simply
assume knowledge of the mean and covariance function
for these distributions. Given information about the
sccond order statistics of &, h, and v we can then

evaluate the expccted value of the estimation error,

EL[J 871. This will be the basis of the fault detection
mcthod to be described below.

3. FAULT DETECTION METHOD

In the fault detection procedure, we shall use the test
variable based on the covariance of the estimation error
between two experiments. Thus in the sequcl we assume
that we have access to two scts of data 1, and I, where

I, corresponds to nonfaulty data and I, corrcsponds to

the suspected faulty data. The estimated paramecter 8
may take different values on each expcriment:

~

6,, for data set I,

)
I

. (3.1)
8,, for data set I, ,

where @ denotes the cstimated values of 8. We also
assume that H, H, and V arc uncorrelated between onc

another.

The fault detection procedure now amounts to comparing
g, and 1/9\, and to dccide if the observed changes can

be explained satisfactorily in terms of the effects of noise,
undermodclling and nonlinearity. If not, then we may
conclude that a system fault has occurred.  The

covariancec function of (8, — 8, under nonfaulty
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condition will be used in this paper as -measurcs of the
uncertainty duc to noise, undcrmodetling and nonlincarity.
We can formulate an appropriate test variable.

T,=(8,— 6)7TC"(8,- 8. (3.2)

Cw=Cow(8,~ 8)=E ((8,— 8)(8,— 6)71
= (Qu=QPCH Q= Q)T+ (Qun— Qu)Cin Qun— Q) T
+ (P,+Pp o}, (3.3)

where
Qi=PO[¥, , Quw=POlV,,
Pi=(of0)™",
Cy=EIHHT), Ci=FEIHHI.

i=n f

Hcre, E dcnotcs the cxpectation with respect to the
undcrlying probability space, and @, ¥ and ¥, arc as

in (2.8).

The first and sccond term on the right side of (3.3)
account for the effects of undermodelling, nonlincarities
and the difference in input signals for the two
experiments. Note that if there is neither undermodelling
nor nonlinearity, or if the inputs are identical, these terms
vanish. The third term on the right side of (3.3)
cotresponds to the measurcment noise.

The stochastic assumptions corresponding to  {#(-)} and
{r,(-)} would be to assume

EVHR A() | = r(B) 8y (3.4)
EVKE , b)) =7 (B3, (3.5)

where
k) = ge ™, e N1 (36)
B = ate ™ k=0,1,, Ny ~1. 37)

If 6% o5, Band 8, were known as prior information,
then Cy and Cj, could be dircetly calculated by (3.4)
and (3.5). Even if they were not known, ¢,% o,%, Band
B, could be ecstimated from a secquence of prior

cxperiments on nonfaulty systems based on the simplc
description (3.4) and (3.5) since 2/8 and 2/8, can be
considered as the ‘average’ time constant for the class
of unmodelicd and lincarization error dynamics,
respectively (Kwon and Goodwin, 1990; Mertington et
al., 1991). ‘

If prior infonnation about the likely undermodelling and
linearization error arc not available, then F and H, can
" be estimated from the available data, where the maximum
likelihood technigue has been used instcad of the
least-squares technique herc (Kwon et al, 1994).

Firstly, the estimatc of H can be evaluated by full model:

T

[ Agn.L ] - [ ng g.;lgf] B [ ZI)T: ] Y. (38)

Thus the inversion formula for a partitioned matrix gives
H=(¥"nw vy,

where
H=1—oo70)'o7.

Also, for the modcl of Section 2,
EIH-HH-MT) = @Tn® e, (39

If His considercd as a rcalization of a random variable,
provided the noisc is gaussian, then H and (779 g2

can be vicwed as the a posteriori mecan and covariance
of the conditional distribution for H, given the data Y.
Under these conditions, from (3.9),

EVHHNY) = EI(H-H+mW(H-H+mNY]
= H A +EVH-m(H-0"Y]
—HA +@nw e = cf. (310)

From (3.8), (3.9) and (3.10), thc lincarization error
covariance Cy, can also be derived

EVHHIYY = B, AT+ (¥Inw)"62 = Cp,, 31D

where
H,=Tnw) vy,

Provided an indcpendent data sct is used to estimatc Cf
and Cg,, then thc common symbol C, and C,, will be
used to denote Cj and Cy, (when a priori data about
H,is usced) or Cy' and Cj, (when a posteriori data about

H, is used).

4. SIMULATION

To illustrate the application of the proposed mcthod, a
simulated fossil-fucled boiler-turbine-alternator 160 MW
units is considered. The nonlincar 7th model presented
by Bell and Astrm is uscd in this paper. Boiler-turbine
modcls are highly nonlincar, and thus simplified
lincarized models arc usually employed. For cxample,
taking the fucl flow W, as the input and the drum water

level deviation X, as the output, an appropriate linearized

nominal modcl is given as follows:
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Fig. 2. A nonfaulty data set and a faulty data set.

Case T, T, T,
Nonfault | 1.46+126 |92294+918.56 | 1.78+ 1.76
Fault |108.16+ 15.62]2376.77 +846.31| 4.55+ 1.66

Table 1. Summary of simulation rcsults.
b]cﬂ + ch
AX () = —3————=—4W() , .
D= o+ A A0 .1

where p denotes the differential operator.

Taking noise and lincarization errors into consideration,
the underlying system can be described by the following
discretized model similar to (2.1)

AX (k) = G(a™', QAW (B) 4 Goala™) | AWIR) 1 2+ o(B)

-1 - bia '+ byt
G(q™", 6) W (4.2)

A nonfaulty data sct and a faulty data sct with -5%
change in the control upper bound were obtained from
a full nonlincar simulation with sampling time T, = 3.

The following constants were chosen: Np = 2, N, = 10,
Ny'= 10, and N=1000. The input W, was assumed to
be corrupted by a white noise with variance o2 = 0.05,

and measurcment noisc (-) was chosen as ¢2 = 9.5.

The fixed denominator was taken by a prior experiment
with nonfaulty data as f, = —0.7317 and £, = —0.0277.

The undermodelling and lincarization crror have been
evaluated by (3.10) and (3.11).

3 5%
<
——
o T4
o
il ppe-—_ ol
oo
-
S

28 %% 3

300015 3 D X 3 & e
trial #

Te

T 1015 ® D X 3 0 8 % 3 1015 ™ 5 0 35 m 65 s
trial # trial #

Fig. 3. Simulation rcsults
(— nonfaulty case; --- faulty case).

The test variable T, has becn adopted for fault detection,
and another test variable T, given by a standard cross

validation test (Soderstrom and Kumamaru, 1985) has
been also applied for the sake of comparison, where

T.=IY,~ 0,8 Ji-1IY,— 0,8 ,IZ,

and an ARMA (Auto-Regressive Moving Average) model
has bcen taken as the nominal model, which is similar
to (2.2) but its denominator is not nccessarily an optimal
one, but it is included as being representative of the -kind
of test frequently uscd in practice.

Also, other test has been performed using the same’
ARMA modecl as that of T and accounting for only the

variance crror due to noise. This test variable has been
denoted herc as T,. Notc that T, is defined by the
similar form to that of (3.2) but it uscs only the last two
terms in (3.3) for the computation of C, and the cstimated
paramecter change in ARMA paramcters instcad of
numerator parameters in Ty, It is also noted that T,
accounts for the crror duc to noisc alone and is onc kind
of the well-known #* tcst variable.

The simulation results are shown in Fig. 3 and
summarized in Table 1. These results show that the
proposed fault detection method works very well even
under the cffect of linearization error, ie., has the
robustness against the lincarization crror. Note that the
cross validation test variable 7. and noisc only test

variable T, do not perform satisfactorily for this problem.

5. CONCLUSIONS
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A robust fault detcction method for uncertain systems
having undermodelling, lincarization crrors and noisc has
been proposed. The key feature of this method is that
it accounts for the cffects of noise, modcl mismatch and
lincarization errors. Some simulations applicd to
boiler-turbine systems show that the proposed method
works well and . outperform existing methods.  This
improvement is a consequence of the fact that the
proposed method cxplicitly accounts for the cffects of
undermodelling and lincarization errors in nonlincar
systems.
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