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ABSTRACT

This paper presents an image-based visual servo control scheme
for tracking a workpiece with a hand-eye coordinated robotic
system using the fuzzy-neural-network. The goal is to control the
relative position and orientation between the end-effector and a
moving workpiece using a single camera mounted on the end-
effector of robot manipulatort. We developed a fuzzy-neural-
network that consists of a network-model fuzzy system and
supervised learning rules.  Fuzzy-neural-network is applied to
approximate the nonlinear mapping which transforms the features
and theire change into the desired camera motion. In addition a
control strategy for real-time relative motion control based on this
approximation is presented. Computer simulation results are
illustrated to show the effectiveness of the fuzzy-neural-network

mcthod for visual servoing of robot manipulator.

L INTRODUTION

In traditional visual scnsing and manipulation which are
combined into an open-loop fashion, 'looking' then ‘moving', the
performance of the operation dircctly depends on the accuracy of
the visual sensor and the controller. On the other hand, an
altemative to increasing the accuracy of the subsystems is to use a
visual-fecdback control loop, which increases the overall accuracy
of the system. Visual servoing is the fusion of results from many
elemental areas including high-speed image processing, kinematics,
dynamics, control theory, and real-time computing. It has much in
common with research into active vision and structure from
moving which are the important issues in the high-level computer
vision,

The task in visual servoing is to control the posc of the robot's
end-effector, °xm, using visual information, features, extracted
from the image. Assume that the given robot has 6 DOF(degree of
freedom). Pose, X, is represented by a six clement vector encoding
position and orientation in 3D space. The camera may be fixed, or
mounted on the robot's end-effector in which case there exists a
constant relationship, '6";’ between the pose of the camera and the

pose of the end-effector. The image of the target is a function of

the relative pose between the camera and the target, “x,. Some

t
relivant poses, are shown in Fig. 1.
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Fig. 1. Relevant coordinate frames; world(0),
end-effector(t6), camera(c) and target(t)

*

The camera forms a 2D projection of the scene onto the image
plane where the sensor is located, and during this process direct
depth information is lost. Some additional information is needed to
determine the 3D coordinate corresponding to an image plane point.
This information may come from multiple views or knowledge of
the geometric relationship between several feature points on target.

A feature is generally defined as any measurable relationship in
an image, e.g., moments, relationships between regions or vertices,
polygon face areas, or local intensity pattems. A good feature
point is one that can be located unambiguously in different views of
the scene, and the coordinates of a feature point or a region centroid
are most commonly used. A feature vector, f is a vector containing
feature information as described above.

There is an important classification of visual servo structure;
position-based visual servoing and image-based visual servoing.
In position-based control, features are extracted from the image,
and used in conjunction with a geometric model of the target to
determine the pose of the target with respect to the camera. In
image-based servoing the step in which the feature is nterpreted to
the relative pose of the target is omitted, and scrvoing is done
directly using image features. The image-based approach may
reduce the computational delay, eliminate the necessity for image
interpretation, and climinate errors in sensor modcling and camera
calibration. However the process is non-lincar and highly coupled,
and it does cause several problems in controller design.

In this paper, we proposec a fuzzy-neural-network(FNN) to
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approximate the nonlinear mapping[12] which transform the
features and its changes to the desircd camera motion. The
proposed FNN is a universal function approximator for any real
continuous function, and its performance as a function
approximator or nonlincar adaptive signal processor is presented in
[10]. For the effective application to the visual servo control,

appropriate image feature selection process is considered, and the
required FNN is designed. Some simulation results to show the
successful aplication of our FNN are included.

II. IMAGE-BASED SERVOING

In image-based visual servo control, the location of features on
the image plane is directly used for fcedback signal. For a robot
with a camera mounted on end-effector, the viewpoint, and hence
the feature locations in image will be a function of the relative pose
of the camera to the target, °x,. In general this function is non-
linear and cross-coupled such that motion of one end-effector DOF
will result in the complex motion of many features, e.g., camera
rotation may cause horizontal and vertical translations of the

feature points on the image plane. This relationship is described as
[ = fCx,). )
If we linearize this equation about the operating point, (1) becomes

5 =7J(x,)5x, 0]

v rc

where “J (°x,) is a Jacobian matrix relating rate of change in pose
space to ratc of change in feature space. This Jacobian is refercd to
as feature Jacobian. Assume that the Jacobian is square and non-
singular, then

%, = 37Cx )i )

is obtained. In turn, the end-effector rates may be converted to
manipulator joint rates using the manipulator's inverse Jacobian

6="J3;(8)"%, (©))

where @ represent the joint angles of the robot. Based on these
relationships, we can formulate a visual feedback control law,

Such a closed-loop system is relatively robust in the presence of
image distortions and kinematic parameter variations in the
manipulator Jacobian. A number of researchers have demonstrated
results with this image-based approach to visual servoing. The
significant problem is to compute or estimate the feature Jacobian.
We can find that geometric optics model will be also reuired to
obtain the feature Jacobian of which analytical derivation is a quite
difficult process, and each element of the feature Jacobian is a
function of °x, which especially requires either the CAD model of
the object or the estimation of the distance between the object and
the camera. This requirement usually makes the feature Jacobian be
computationally complicated and much sensitive to the
measurement errors of the distance. Furthermore, if /J (°x,) is

singular, the approach using the inverse Jacobian can not be

applied to the control of the robot.

Suh, et al.[12], propose a method to overcome these drawbacks
when using the feature Jacobian. They show that there exist a
nonlinear mapping which transforms the features and their changes
to the desired camera motion without measurement of the relative
distance between the desired camera and the target, and the
nonlinear mapping can eliminate several difficulties encountered
when using the inverse of the feature Jacobian as in the usual
feature-based visual feedback controls. This nonlinear mapping
may be approximated by neural nctworks or adaptive fuzzy
systems.

III. FUZZY-NEURAL-NETWORK; FUZZY SYSTEM
WITII LEARNING RULE

_ We consider a simple fuzzy system as follows;
1)  fuzzy system has two input variables,
2) each input variable has two fuzzy sets
defined by - Gaussian membership functions
or bell-shaped functions,
3) four fuzzy rules are made from 1) and 2),
4)  and centroid defuzzification method is used.
If this fuzzy system uses product-inference logic and singleton
fuzzifier for output variable, it can be described by a nctwork
model in Fig. 2.

Fig. 2. Fuzzy system as a network model.

This fuzzy system's output is
J()=Fw, ®)

where F=[®,..9,]", w=[w,..w];

S/
D, Z_‘::lv,l" (6)
where
By (x) = pi(x) ) (xz),
$5(x) = ) (x5 (xp),
3(x) = 1} (x )5 (x,),
04 (x) = 1] (x, )13 (xy).

We can find that the fuzzy system in Fig. 2 is clearly a
multilayer feedforward network, and this description provides the
basis on which we can apply the learning algorithms used in
training the neural metworks. Thus we can call this network-model
fuzzy system as a fuzzy-neural-network(FNN).

If we simplify fuzzy IF-THEN rules and describe the fuzzy
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systems more systematically as in (7], following fuzzy subsystem is
available.
X w (Y 1 (x
£ = Zo T (5) -
’ Zj=l(ni=ll“‘i (x)
where K is the number of IF-THEN rules, N is the number of input
variables, and the Gaussian membership function is of the form

x,—n
o

1] = exp[-0.5( Y1 ®)

m,.’ is the center of a fuzzy set defined by ! and deviation ¢’
determines the shape of the membership function . An example

of this fuzzy subsystem that has two input variables and two fuzzy
rules is described as a following netwrck model in Fig. 3.

Fig. 3. Subset of fuzzy systems based on simplified rule base.

By Wang[7], it is proved that this is a subset of fuzzy system
which may afso become a universal approximator for any real
continuous function. By using this fuzzy subsystem. we can get a
remarkable advantage; when we apply the gradient descent method
for learning, the output equation of this fuzzy subsystem provides
much simpler and more efficient computions of chain rules.

As shown above, fuzzy systems can be represented as feed-
forward multi-layer networks in which all parameters are
adjustable. Thus some supervised learning algorithm used in
training neural networks can be incorporated in fuzzy systems, e.g.,
back propagation fuzzy systems are available[4][6][7]. On the
other hand, if all paramecters determining the membership functions
of input variables are fixed in (5) or (7), the only free design
parameters are w, and the fuzzy system is linear in these
parameters. By adopting this point of view, we are able to use some
efficient linear parameter estimation methods, e.g., least square
algorithms.

If all parameters determining the membership functions of input
variables are fixed, we have a simple linear regression model,

B=S(x)+E
=F(x,) w+e, ®

X
=Y wd (x,)+g,
i=(

T L .
where x=[x, X, ;... %_yl, N is the number of input

variables, and K is the number of rules. The problem in least
squares method is to obtain the estimates of {1} which minimize

2
the squared error "F{ w-y, “ .

Optimum estimates of the parameters, w', are given b
p 4 y

w, =[FF,I"Fy, (10)
where
Yu=Ew,
and
Yo =D Yy Yl s an
w, =[w, wzn.wk,]r, (12)
F =[F K ..F_T. (13

I (13), F =[®,(x,) Dy(x,) .. Dp(x,)], k=0,1,..,m—1.

- The suffix m indicates that each matrix above is obtained using all

m data points. Equation (10) gives the optimum least squares
estimate of w_, which can be obtained using any suitable matrix
inversion technique.

The computation of w, in equation (10) requires the time-
consuming computation of the inverse matrix. Clearly, the LSE
method above is not suitable for real-time or on-line filtering. In
practice, when continuous data is being acquired and we wish to
improve our estimate of w_ using the new data, recursive methods
are prefered. A well-known RLS(Recursive Least Squares)
algorithm is available.

On the other hand, backpropagation is an algorithm for learning
in feedforward nctworks using mean squared error and gradient
descent. Letting W be the set of all network parameters,
backpropagation employs a nice simplification that makes it easy to
find the network's parameter gradient Ve(W). This allows us to

update the current w by a small step to form new weights W*

using

W' =W —pVe(W) (14)

The small positive cocfficient of p controls the step size.
We have

g =y ~f(x,) (%)

where x =[x, x,_,...x,_,,,J': N is the number of input variables
of fuzzy system, and f(x) is in the form of (5). In LMS
algorithm{3][8), we would estimate the gradient of mean squared
etror, MSE =E[€]=¢€,. At each iteration in the adaptive

process, we have a gradient estimate of the form

§=£-2 Jeg,

3 W & m (l6)

where W is the set of adjustable parameters of given network. If
our fuzzy system has Gaussian membership functions in the form
of (8), the adjustable parameters are m/, ¢/, and w,. With this

simple estimate of the gradient, we can specify a gradient descent
algorithm by chain rule as follows

w, ,=w,—=2pe T, aun

(18

m,, = m, ~2pg, —*

JF, dm, ’
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2%, OF,

Sen =S¢ ~ 2P ’a?k %, (19)
where
ol ot om ad o .. of
o ond .. om o o .. of
m = . y §& ’
nty nlo ..omy oy o .. oy

w=[w Wy e

N is the number of input variables, M is the number of fuzzy sets of
each variable, and K is the number of rules made from MY, Ifwe
consider the fuzzy systems in the form of (7), M becomes equal to
K and the computations of chain rules become much simpler as in
[7]. p is the gain constant that regulates the speed and stability of
adaptation.

We can combine the gradient descent method and the least sqares
estimate to update the parameters in a fuzzy system. This hybrid
learning procedure is composed of a forward pass and a backward
pass. In the forward pass, we supply input data and functional
signals go forward to calculated each node output, and linear
parameters w, of output layer are identified by the RLS algorithm.

After identifying parameters w,, the functional signals keep going
forward till error measure is calculated. In the backward pass, the
error rates propagate from the output end toward the input end.
and the parameters m, and s, are updated by the gradient descent
method in cquations (18) and (19). Not only can this hybrid
learning rule decrease the dimension of the search space in the
gradient method, but, in general, it will also cut down substantially
the convergence time.

IV. DESIGN OF FNN FOR VISUAL SERVOING
AND SIMULATION RESULTS

The differential nonlinear mapping g(,8f)[12] relating the
image features and their changes to the desired changes in the
camera's pose is difficult to analytically obtained, and may be
approximated by the FNN developed in the previous section.

Let (8x,,8x,,8x,) and (dx,,8x,,dx,), respectively, represent
the differential change in translation along and rotation around the
X, Y,and Z axes of the camera frame. Then each relative pose

element is desribed as

&, =g (S-S I8, =16, (20)

where f, is the feature element and N is the number of features.
Each nonlinear mapping g, is approximated by FNN which is
designed considering the dependencies on the characteristics of each
feature paramcter and learned through all the possible situation in
the workspace of the robot. i

The test object used in the computer simulation is shown in Fig,
4. We select the following four feature elements from the target
object in the image;

f, = the X coordinate value of the region centroid

Fig. 4. Target object for simulation

f, = the Y coordinate value of the region centroid

f, = the size of the cirlce in the current image / the
size of the circle in the reference image

f, = the rotation angle of the square in the image

frame.

The selection of the features depends on a blend of recognition and
control criteria. In typical feature-based servoing, the most

important consideration is the effect that changes in the feature

positions have on the elements of the feature Jacobian. But in our

FNN approach, major interest is the effectiveness in constructing

the fuzzy rule base, i.e., the number of input variables included in a

rule, and the number of fuzzy rules in a FNN, efc.  Considering the °
dependencies of each pose clement on the given features, we design

the following six FNN;

&, =gl(.fl’f3'(5fl)7

&, =g, (/3. /5, 91),
dx, = g,(3,),

o, = g,(/,.9,.9),
& = g,(/,, 9. 9),
Oxg = g,(8,).

@n

Here, each g, is a FNN which has the form of (7) in the previous
section, and hybrid learnin rule that uses both the gradient-descent
and the least square method is used.

The test relative motion trajectorics and the output results
produced by our FNN approximator are presented in Fig. 5. We
can find that our FNN approximator tracks the trajectory in each
pose parameter successfully. 1t can be shown that the FNN
tracking accuracies in x are within £0.8 ¢m, y within Xlem, z
within 1.5 cm, yaw and pitch with 0.6 degree, and roll with
0.8 degree.

V. CONCLUSION

We develop FNN(fuzzy-neural-nctwork) and apply it to
approximate the nonlinear mapping for visual scrvoing. The
eveloped FNN is network-model fuzzy system and has the extensive
learning capabilitics with gradient descent method and least square
_estimation. We design the required FNN based on the nonlinear
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mapping between the changes in features and the changes in
relative pose of object, and train the FNN so that it can track the
moving target in the whole workspace. From the simulation results,
we can find that the visual servoing based on FNN successfully
works, and the trajectory tracking errors are very small. Study on
the practical control problem in robot dynamics and
experimentation will be'a future work.
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Fig. 5. Simulation Results




