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Abstract

Neural Networks (henceforth NNs, with adjective "artifi-
cial” implied) has been used in the field of control however,
has a long way to fit to its abilities. One of the best ways

to aid it is "sﬁpporting it with the knowledge about the

linear classical control theory”. In this regard we have de-
veloped two kinds of parametric activation function and
then used them in both identification and control strategy.
Then using a nonlinear tank system we are to test its capa-
bilities. The simulation results for the identification phase
is promising.

1 Introduction

Our main objective is to make a good controller for non-
linear systems. Neural network is a promising tool for non-
linearity modeling and controller design; because of its ca-
pability of learning and representing a wide class of, all the-
oretically continuous bounded, nonlinear mappings. How-
ever, when applying a NN to identification or controller
design [1}-[4], the architecture of the network has signifi-
cant influence on the result, learning speed and learning
error, and therefore we have to choose appropriate archi-
tecture. And the network’s capability of approximating
various mappings is achieved at the cost of uncleanness of
its inner structure. The NNs are usually black boxes; we
can not obtain any information about the inner structure
of the NN corresponding to system or controller. In identi-
fication, accuracy of the derived model is very important.
And if we could have some information about the inner
structure of the system to be identified, it would be useful.

We can solve both of the above mentioned problems si-
multaneously, should we find an automatic method for de-

termining the network architecture which achieves good
accuracy and provides us with the system structure in-
formation. Here we restrict ourselves to choosing neuron
activating functions suitable for the given task which the
network should undertake. As some researchers have al-
ready had some relevant researches [5]- [8], introducing ad-
ditional adjustable parameters to the activation function
reduces the learning error. Here we utilize the additional
parameters not only for attaining better accuracy but also
obtaining information about the systeni structure. Also,
if the additional parameters are placed suitably, they can
change the shape of the function covering from a linear
function to a sigmoid function with steep shape. This sub-
ject will be considered in more details in the next section.

As the final aim of modeling would be control, the prob-
lem of making an appropriate controller is important. In
the most common cases designers use linear control the-
ory, which is well established, to approximate the nonlin-
ear systems and then making a linear controller. However
if the plant can not be well approximated then reaching
to a rigorous controller will be difficult.” Here using the
linear classical control theory we customize the parametric
NN to make an appropriate initial controller. In section
3.2 we will develop such a controller in conjunction with
linear truncated function. Finally we will study how we
can apply this method to control water level in a nonlinear
plant.

2 Parametric Neural Networks

2.1 Network Configuration

In ordinary NNs as the activation function is nonlinear
there is no way to initiate the network’s output with any
reference value, if there is any. The possibility of starting
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the NN with a certain value can incorporate the existing
knowledge of the linear system theory for a better transient
response of the control system.

Studying the biological creatures like Aplysia buccal
ganglia presents evidence that syﬁaptic strengths are par-
tially specified by postsynaptic neurons {9]. This fact en-
courages us to search for some kind of network which intro-
duces intrinsic relationship between neurons and weights.

The aims for searching new activation function are:

Firstly, we seek such a network which has good accuracy
and high learning specd.

Secondly, gaining more information about the system
would be a great assistance in identification.

Thirdly, having the new activation function we should be
able to set it as a linear/nonlinear function, when we

need so, to customize a linear initial controller.

The more number of parameters are introduced in a net-
work, the more describing ability it obtains. Especially in-
troduction of additional parameters to the activation func-
tions and changing their shape by adjusting the parameters
will favor in giving more flexibility to the network: it will
be able to represent a wide variety of input-output map-
pings which are different from each other in complexity
and smoothness. Also we would like to obtain some in-
sight into the system structure from the NN model. Thus
we suggest to use a parametric sigmoid function

f(z) = 51; . tanh(ln pz) (1)

as an activation function.

By changing p it will be an unfixed and interactive func-
tion. This new shape of the activation function is favorable
because using In p instead of p prevents from excessive re-
duction of the absolute value of the function.

Expanding equation 1 can help us to see the effect of
changing p on the sigmoid function’s shape

y _ npef | (mpl@ef
fp(z) = 2 —(illn)p):c +2!2§lnp+21 z3 ._3;{]1-1325’;‘i + .. (2)
2 3!

Studying the above equation one can understand how
easily a very changeable sigmoid function can be obtained.
This variety starts from a, linear, line and can develop to
nonlinear ordinary sigmoid function. By setting p to 1 we
can get a linear function instead of sigmoid function. The
shapes for different ps are depicted in Fig. 1. The proposed
activation function will realize:

neuron input

Figure 1: Two shapes of sigmoid function

¢ High flexibility which results in less error bound.
¢ Sensitizing the network to linear/nonlinear parts.

¢$ Containing more information based on linear control

theory for making initial controller.

The parameter p can be tuned along the weights to min-
imize the error between the network output and the teach-
ing signal. If p = 1 is obtained after tuning, it means that

neuron is linear.

2.2 Parameters Learning

Extending the backpropagation can be a good mean for
training the new parameter. In the case of the weights it
is one of the common method and here also we use that
for pushing off the error function more toward , hopefully,
global minimum.

In Fig. 2 the parameter p is updated so to minimize the
squared sum of errors between the network outputs and

their desired values:
1
E =3 > {t(k) - oo(R)}", (3)
k

where t(k) is the desired value for the kth output. The
update will be done as,

OE
new = Pold = P 75— 4
p Pold ~ B Tua (4)
where § is learning rate. Let us define error signals as,
a OF
Soo(k) = Fou(F) = o.(k) — t(k), (5)
6.1(K) a OF - OE  do,(k)
0z,(k)  Bo.(k) 0z,(k)
= Goo(K) - tanh'(Inpy - zo(k)), (6)
8E
bold) & e
w0 = Fat)
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Figure 2: Network structure

IE 0Ox.(k)

= L a@aag) " e @
' . a OE _ OE du(j)
6u(7) = 3z4(j) ~ Bow(j) 0zn(j)
= 64o(7) - tanh’(Inp; - Th(5)). (8)

These signals can be calculated in turn. This is noth-
ing but the backpropagation. The gradient dE/dp can be
obtained using the above signals. For p in the kth output

neuron,

9B O doy(k)
3pk aO,,(k) apk

= 50.:(19)((—‘(1——1—) - tanh(lnpy - z,(k))

dpx Inpy
1 - tanh’(Inpg - (k))dlnp,c ®) ()
+m anh'(Inp; - z, e Zo
-1
= or Tope {600(K) - 00(K) — bui(K) - Zo(k)}. (10)

For p in the hidden neurons, the gradients can be calcu-

lated as,
o =~ frel) - ) = Bu)- 1) (1)

Then the parameter p can be updated using (4). Of course,
all the weights can be updated using the above error sig-
nals, too.

3 Controller Design Using Para-
metric NNs

3.1 System Modeling & Control

Parametric adaptive control is the problem of controlling
the output of a system with a known parameters. To make
the problem analytically tractable; in the classical adap-
tive systemn control theory the plant to be controlled is
assumed to be linear time-invariant with unknown param-
eters. These parameters can be considered as the elements
of a vector m. If m is known, the parameter vector 8 of a
controller can be chosen as §* so that the plant together
with the fixed controller behaves like a reference model de-
scribed by a linear difference (or differential) equation with
constant coefficients. If m is unknown, the vector 4(t) has
to be adjusted on-line using all available information con-
cerning the system.

In contrast we uses NNs which permit us to go beyond
the linear models and controllers. There have been two
major strategies treating the problem of adaptive control
of an unknown plant using NNs. The first is direct con-
trol and the second is indirect control. Figure 3 shows the
direct control scheme. In this method the parameters of
the controller are directly adjusted to reduce some norm
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Figure 3: Direct Controller
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Figure 4: Indirect Controller

of the output error. However if both plant and controller
are nonlinear this method will have the stability problem
because, we can’t adjust the controller parameters by the
output error [10]. Figure 4 provides the configuration for
the indirect control scheme. In this method at first by
using one of the known criteria we can parameterize the
plant. Then the controller parameters, in turn, are ad-
justed by backpropagation the error through the identified

model.

3.2 Initial Controller

The adaptive control of linear system is well developed
thus the principal use of NNs is concentrated on the con-
trol of nonlinear systems. However, in this relation, one
of the most important problems is: "how we can use the
well established linear control theory in accompany with
the powerful abilities of the NNs”. When we approximate
a nonlinear system with a linear model although we can
not cover all of the characteristics of the system by such a
model but it isn’t comparable with a controller that its pa-
rameters has been adjusted randomly. On the other hand
if we want to control a system by the indirect method we
will have the problem of the initiating the controller. One
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Figure 5: Shapes of the truncated linear Function

of the promising ways is to start the controlling process
with a linear controller and then developing it to a NN
controller. Until now in the related articles such as11]
some different sort of this approach have been discussed
but there has been problem yet. It needs lots of work to
find a suitable transition process, from a linear controller
to a fully nonlinear controller.

Here we want to introduce a suitable bridge between
the linear and nonlinear controller. In the other words we
initiate the control process by a linear controller and then
push it off toward a nonlinear controller. This controller
will be designed as a unique NN. By using this method
the knowledge of the linear control theory will be used in
conjunction with the powerful abilities of NNs. As the first
step let us explain a new, truncated linear, function which
will be used in the initial controller,

Glz) = cosh a(z.—SIE)}lftosh ah (12)
or,

G(z) = z- g(z) (13)
where,

o(z) = sinh ah (14)

cosha{z — b) + cosh ah

Figure 5 represents a truncated linear function which, has
been used in the first hidden layer of the new NN con-
troller. In fact the first hidden layer of the controller, by
having G(x) as activation function, divides the input space
into few segments which they classify the signals and then
bypass it to the next layers. By this method we can ap-
proximate an arbitrary nonlinear function with arbitrary
small error. In the other word one parametric sigmoid
function only has to approximate the function over each
segrhent. Figure 6 shows such a NN controller. This net-
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Figure 6: Initial Controller

work differs from Fig. 2. Here let us concentrate only on
the bold lines, the dash lines will be considered in the next
section. Neurons with circle, in the second and third layers,
represent the parametric activation which was discussed in
the second section. The p shows the neuron. parameters’
values which in the bold circles are chosen p ~ 1 that cor-
responds to linear neuron(dash neurons will be considered

in the next section).

3.3 Improved Controller

Starting the control process by linear controller would be
the first step however, we will complete it by a nonlinear,
NN, controller. The dash lines in the Fig. 6 has very
small random values which means at the first the plant
will be stimulated only by the linear part of the controller.
Then, after passing the few seconds the learning will affect
the dashed lines and they will become similar to the bold
lines which means they has entered to, improve, the control
strategy.

In this stage the parameters’ learning will be start and
not only the random setting but also the initial predeter-
mined parameters like p;, ps, and pawill be changed by the
backpropagation of the error through the network.

4 Nonlinear Plant Control

4.1 Tank System

For testing the proposed controller we have found the
tank system in Fig. 7 a suitable plant for the simulation.
Here we have input u and outputs o; and 0. This plant has
two discontinuity which will occur when I = Q or | = 2R
where A(l) = 0. Thus it would be a proper nonlinear

Neuro Controller
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Figure 7: Tank System Control

plant to examine parametric NN controller. This model
has a practical shape which in industry is used widely for
its strong, spheric, structure. At first we have made a
mathematical model for this tank which will be used for

the NN training and its differential equation is:

(,Ex — M- (/2
d_ Koy V29l (15)
@~ r@2R-1)

where the parameters are define in table 1. Since the in-
put discharge can be controlled by an electrical valve, it
may be considered as a function of the time which has two
operational ranges: a) 0 < s, < lband b) 1 < s <100 as
bellow,
a) Cy = 15555(3228.6554)
b) Cy = 15m55(—3168s, + 66105, — 216542 + 0.002655,%)
Then the following scheme is used to calculate water
level as a function of time:
"+ At{(1 — O)U™! + 60"
(1= )A1(1) — 9A(1))
_la- 6)0"+! + 0™ (16)
[(1 - 6)Ar+(l) — 0A~(1)]

By this way we have chosen the mixed implicit & ex-

l"+1

plicit [12] numerical methods for calculating the differen-
tial equation which has had very good results.

After making this model we used this model to train
the parametric NN (as section 2.1-2.2). The results of this
simulation is shown in Figs. 8 9.

And then we have used the initial controller scheme to
build the linear part of the controller. After this scheme
we would improve it to obtain the final controller.

— 620 —



Figure 8: NN and plant output for tank system

5
variable || definition dim
l level of the water m
A(l) water surface for water level | m?
U input water m°
4] output water ms
dz/dt rate of water level change in time m/s
R radius of the sphere tank m
M effective area of outlet cross section m? (1]
C, effective area of inlet cross section m?
g acceleration due to gravity m/s’
At time step : s
[ s input voltage of the valve v 2]
n superscript for nth time step —
n+1 superscript for n + 1th time step —
[ parameter of the mathematical scheme | —
. (3]
Table 1: Parameters & variables definitions
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Figure 9: Error for the tank simulation

12]
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Conclusion

In this paper we have studied a new scheme for the con-
troller design and then simulation results shows its proper-
ness for the first phase, or Identification.
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