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Abstract

In this paper, we discuss an application of LTR
techniques to integral controller design for discrete—
time non~minimum phase plant models. It is shown
that the feedback property obtained by enforcing the
conventional LTR procedure can be achieved by the
partial LTR technique. In addition, we point out that
the partial LTR technique provides more design
freedom in shaping a target feedback property.

1. Introduction

Although the perfect recovery of a target
feedback property is impossiblc for non-minimum
phase plant models, the LTR (Loop Transfer
Recovery) techniques are  still  useful to
approximately rccover the target feedback property
[1][2]). As a systcmatic design procedure for non—
minimum phase plant models, Moore and Xia [3]
have proposed a partial LTR technique for
continuous—time QG control systems. For discrete—
time LQG control systems, Ishihara [4] have recently
clarified the relation between the enforcement of the
conventional LTR procedure and the partial LTR
technique.

In this paper, we discuss an application of the
LTR techniques to integral controller design for
discrete~time non~minimum phase plant models. As
a basic integral controller design, we adopt the
method proposed by Guo ef al. [5]-[7]. We focus
our attention to feedback property at the plant input
side. By reformulating the design method of Guo ef
al.[5] for a minimum phase/all-pass decomposition
of the plant transfer function matrix, we construct an
observer—based integral controller required for the
partial LTR. We show that the feedback property

oblained by enforcing the conventional LTR
procedure can be achieved by the partial LTR
technique. This rtesult provides clear system-— -
theoretic interpretation on the enforcement of the
conventional LTR procedure. In addition, we point
out that the partial LTR technique provides more
design freedom in shaping a target feedback property
via the selection of a performance index.

2. Prcliminarics

Cousider a discrete—~time plant described by

x(t+D)=Ax () +Bu(t), y(t)=Cx(0), 2.1
where x(1) ER" is a state vector, u(1)ER™ is a
control vector and y(f) ER™ is an output vector. We
assume that the pairs (4, B) and (C,d4) are
controllable and observable, réspcctivcly, and that
the matrix CB is nonsingular, To guarantce the
existence of an integral controller, we assume that
the plant model has no zero atz=1.

If the model (2.1) is obtained by discretization
with a zeroth order holder, the transfer function
matrix G(z)=C(zl ~A)'B is frequently no-
minimum phase. Then, we can decompose G(z) as

G(z)=C(zl - A)"'B,G,(2), 2.2)
where C(zI - A)™' B, is a minimum—phase part and
G,(z) is an all-pass part satisfying G!(z™")G,(z) = 1.
All unstable zeros of G(z) are contained in G, (z).

Let x () and x,(r) denote the state of the
minimum phase part and that of the all-pass pant,
respectively. Define the argument state vector as

x(1) =[x, (1) x, ()] 23)
Let {A,.B.C,.D,} denotc a state space

representation of the all-pass part. Then, we can
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construct a stochastic model of the plant as

X(! +1) = Dy (1) + Tu(t) + Ow(r),
y(t) =Hy(r) +v(),

A B.C, B.D,
D = , I'= 5
0 A4 B,

e-ﬁ“ BD"} H=[C 0],

(2.4)

where

2.5)
Bfl

w(l) ER’ is disturbance vector

w(t) =[w (1) Wi, 2.6)
and v({)ER” is an observation noise. Notc that
w,(1) is adisturbance entering in the plant input and
w, (1) is a fictitious disturbance inserted at the input
of the minimum-—phase part to achicve the partial
LTR.

We assume that w(r} is a zero-mean while noise
sequence with the covariance matrix

Q=diag[Q,] Q1], @7

where 0, 20, 0, =0. The observation noise v(D),
which is assumed to be independent of w((), is a
zero—mean white noise sequence with the covariance
matrix R = 0.

It can easily be checked that if {4, B, Cy is
minimal, (&, ) and (H, ®) are stabilizable and
detactable, respectively. In addition, we can show
that the matrix

-1 T
Q= 28
) e

is nonsingular provided the model (2.1) has no zcro
at z=1.

3. Minimum Phase Statc Feedback Controller

Assuming that all the state of (2.3) is perfectly
measurable, we construct an integral controller
accounting unit computation delay based on the
cfficient design method proposed by Guo et al. [5].
The algorithm of this controller is given by

w(t+1) =s(t+ ) - A[Ox () +Tu(t)],  (G.1)
s(E+ D) =50+ M[r(1) - w(1)], 3.2)

where r(f) is a step reference input, (1) is the state of

the integrator. The matrices A and M in (3.1) are
determined by the linear matrix equation

[A Mle=[wo I+wr], (33)
where W is the state feedback gain matrix of a
regulator problem for the plant (3.1) and Q is the
matrix defined by (2.8). Let us rewrite the controller
algorithm (3.1)~(3.2) such that only the minimum-
phase state is used for the feedback. First, partition
the feedback gain matrix defined by (3.3) as

A=[L, L] (3.4

where I, and 1, are the feedback gain matrix for
the minimum-phase part and that of the all—pass part,
respectively. Then, from the equation (3.1') and (3.4),
wc have

w(t +1) = s(t +1) = L[ Ax, 1)+ B,C.x, (1)

+ B, Du(1)]- L[ A,x,(1) + Bu(0)]. 3:3)

Denoting the z-transforms of x,(1) and u(t) by
x,(z) and u(z), respectively, we have
Xa (Z) = (21 - Aa)_l B,,u(z),
Cox,(2) + Du(z) = G, (2)u(z).
Taking the z—transforms of the both sides of (3.5)
and substituting (3.6) for x,(z), we obtain

(3.6)

2u(z) = zs(z) - L[ Ax,,(z) + B,G, (2)u(z)]
= LI4,(zI - )" + NB.u(z) 67
=2(z=1)"M[r(z) - y(2)} - L[ Ax,,(2)
+B,G,(2)u(z)] - zL,(zI ~ A,)" B,u(z),
where x, (2), 5(z), y(z) and r(z) are the z—transforms
of x,(z), s(t), y(t) and r(r), respectively. Definc the
transfer function matrices
T(z) = A, (2)M, I(z)=4(2)L,, (3.8)
where
A () =T+ Lz -A)'B]". 3.9
Then, we can rewrite (3.7) as

w(z) = (z=D)'T(2)r(z) - y(2))

-z7(2)[Ax,.(2) + B,G,(z)u(2)]. (310)

Note that [4,x (z) + B,G ()] in the right side of the
above equation is just equal to the z—transform of the
one-step ahead prediction of the minimum-—phase
state. Formally, the control law (3.10) is obtained by
replacing the constant controller matrices in the
original integral controller [S] by the dynamic
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matrices. We call the controller of (3.10) as the MSF

(Minimum-Phasc State Feedback) integral controller:

For the sensitivity matrix atthe plant input side of
the above control system, we can obtain the
following result.

Proposition 3.1: The input sensitivity matrix Xy (2)
for the MSF integral controller is given by

Zyse(2) =z (2= DE(2)] + L, (2] - 4,)"

(3.11)
B, +2°L,B,G,(2)],

where

2(z) =1 +W(zl - D) T (3.12)
is the input sensitivity matrix of the rcgulator for the
system (2.4) with fcedback gain matrix W.

The expression (3.11) docs not only manifest the
cffect of introducing the integrators but also gives
the explicit relation to the regulator used in the
design.

Although the above proposition holds for any
state feedback gain matrix W that makes & -1
stable, we now consider the case where W is
determined by using the quadratic performance
index

V= Eol,v'(r)ym+pu'<r)~<r)], (3.13)

where p 2 0. Then we can obtain the following result.

Lenima 3.1: Assume that the transfer function matrix
G(z)=C(zl = A)™" B has a single unstable zero g

(JgI>1). Let m and € denote a unit zero—direction
veetor and a zero-state vector, respectively. Namely,

[q]../l "B}[E]-o, W=l (3.14)

~C 0 lin

holds.  Choose the matrix B, in (2.2) and
{4..8,.C,,D,} as~

B,=B,J,, (3.15)
1 1 [
4, =7 B, =E(f1 “;)T] , Go=m,

| (3.16)

Dn =1 _(1'*"“)717],,

q
where

1.,
B, =B—(£I'3)§Y\, (3.17)
Jo=1~-(g+I)mn. (3.18)

Let Fand W =[F, F,] denote the optimal feedback
gain matrix of the regulator problem for (2.1) and
that for (2.4), respectively, under the performance
index (3.13). Then the following relations hold:

F =F, I =qlg (3.19)
n
Using the above lecmma, we can obtain the
following result for the feedback gain matrices of the
integral controller.
Lemma 3.2: Assume that G(z) =C(zl - A)™' B has a
single unstable zero q. Consider the realization of
the all-pass part G,(z) given in Lemma 3.1. Define

the matrices L and 7' by the linear matrix equation

(L T)E=<[r4 1+FB], (3:20)
where I is the optimal feedback gain matrix of the

regulator problem for (2.1) under the performance
index (3.13) and

A-1 B
[ = . 3.21
[ C (l} (3:21)

Then, for the regulator feedback gain matrix given
by (3.19), the solution of the matrix equation (3.3)
can be expressed as

I,=1L, L =qL, M=T. (3.22)

Proof. Using (2.3) and (2.4), we can rewrite the
matrix equation for £, £, and M as

L(A-I)+MC=F.A, (3.23)
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LB.C +1L(A ~1)=FBC,+FA, (324)
LBD, +LB =I+FBD,+FB,. (325)

From (3.14), we have (q/ - A)E ~ Bn. Then, from
(3.15) and (3.16), we have

BC, = BI,C,==qlBn~(g 5]
=(g4~-DE

Noting that J,D, =7 holds from (3.16) and (3.18),
we have

(3.26)

B,D,=BJ,D,=B, (3.27)

Using (3.19), (3.26) and (3.27), we can rewritc
(3.23)~(3.25) as

L(A=T)+MC =FA, (3.28)

L(A-DE+L(L-D=al4E,  (329)
LB = (g =81+ Ly (g - i =1+ FB. (330)

Noting that L and T are defined by (3.20), we can
casily show that [, L, and M defined in (3.22)
satisfy (3.28) and (3.30). Substituting (3.20) into the
left side of (3.29) and noting that L satisfies (3.20),

we have

L(qgA-1)5E+(1-q)I§

= qL(A - D)E=q(FA-TC)E,
Since CE=0 holds, it follows from (3.32) that (3.29)
is satisfied. Hence, the matrices L , L, and M
defined in (3.22) satisfy the matrix lincar equation
(3.3). Since the uniqueness of the solution of (3.3) is
guaranteed by the non-singularity of Q, the solution
of (3.3) is given by (3.22). |
Remark: The matrices L and T defined in (3.20) arc
the feedback gain matrices of an integral controller

(331)

for the original plant model (2.1).

Using Proposition 3.1 and the above lemma, wc
have the following expression.
Proposition 3.2:  Assume that G(z) =C(zl — A)' B
has a single unstable zero. Consider the realization of

the all-pass patt G, (z) given in Lemma 3.1.

Consider the control law (3.10) using the matrices
(3.22). Then, the sensitivity matrix at the plant input
side can be expressed as

yse(2) =27 (2 = DS(2){] + L(zl - A)!

[B-B,G,(z)]+2z"LB,G,(2)}, (3-32)

where

S(z)=[I+F(zl - A)"'B]™". (333)
Proof : From (3.16) and (3.19), we have

2
- ST

Gl -A)'s, - Loie (3.34)

Also using (3.14)—(3.18), we obtain
2
BG.(2)=B-L :} Gl -DEy. (335

Multiplying the both sides of (3.35) by F(z/ - 4)™,

we have

2

F(al - A B,G,(2) = F(z - Ay B - g;:—}”én' .
(3.36)

From (3.34) and (3.36), we have the following

relation for the feedback gain matrix defined in

(3.19):

(2l - A)'B, + F,(zI - A)"'B,G,(2)

3.37
=F(zl - A)'B (3-37)

Substituting (3.37) into (3.12), we have (2.21). Also,
for the feedback gain matrix defined in (3.21), the
following relation holds:

L(zI - AY'B, + L (zI - A)'B,G,(z)

3.38

=L(zl - A)'B (3-38)
Noting that I, = L holds and substituting (3.38) into
(3.11), we have (3.32). |

4. Partial Recovery

For the output feedback case, we can construct an
integral controller by replacing the state x(f) in (2.3)
with an estimate %(r) generated by a prediction type
Kalman filter. The estimate defined as

MORIEAOREAO] @1
is generated by the following algorithm:

X, (1 +1) = A%, (1) + B,G,(2)u(1)

+ Km[y(l) - C,’V\,"(l)]
X+ ) =A%, (1) +Bu(t) (4.3) ‘

(4.2)

Let x,(z) denote the z-transform of the estimate
£,(1). Replacing z7'[Ax (z) + B,G, (2)] in the right
side of (3.10) by x,(z), we can obtain the output

feedback integral controller as
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u(t) = (z-D7T(@)r(2) - ¥(2)] - L(2)2,(2). (44)

We call this controller as the MEF (Minimum—phasc
Estimate Feedback) integral controller.
For the controller transfer function matrix of the

MEF integral controller, we bave the following result.

Lemma 4.1: The transfer function from y(z) to u(z) of
the MEF integral controller given by (4.4) can be
expressed as
Cuer(2) = Dc:| (2)N(2), 4.5)
where '
Do(2) =1+ L(z)(zl -A+K,C)'B,G,(2), (4.6)
Ne(2)=(@z-D)"T@) + L)zl = A+ K,CY'K,.
“.7)
Using the above lemma, the input sensitivity
matrix for the output feedback case can be obtained
as follows.
Lemma 4.2: The input sensitivity matrix for the MEF
integral controller (4.4) can be expressed as
Zuer(2) =27 (2 =)@ + L (2] - 4,)"'B,
+2' LI+ -A+KC)" (4.8)
(4-K,00]B,G,(2)},

where X(z) is the matrix defined in (3.12).
Proof: Using the rclation of (4.5), we can write the

input sensitivity matrix as

Zyer(2) =11 + CMF,F(Z)G(Z)]"

-| (4.9)
=[Dc(2) + Ne(2)G ()] De(2).
Noting that the matrix identity
1 -A4+K,0)"
(2l ~ A+ K, C) (4.10)
=z 4272 A+ K,O) " (4-K,0)
holds, we can express D.(z) as
) = -l T _ -l
D(z2)=1+z"A(2) L[+ (2l —A+K,C) @.11)

(4-K,0)]8,6,(2).
Then the denominator of (4.9) can be rewritten as
D.(2) + Nc(2)G(2)
=1+ L(z)zl - A+ KCY'[B,+ K G, (2))
G,(2) +(z=1)"T(2)G(2)
=]+ L(z)Xzl - A" B,G,(2) +
(z-1)"T(2)G(2)
=A,(2z-D{z-DI+TA+[A(D-1)
+MH)(z7 -P)' T}

=z(z-1)"A,(2)2(2), (4.12)

where we have used (3.3) to obtain the last
expression. Substituting (4.11) and (4.12) into (4.9),
we can obtain (4.8). |
Using Proposition 3.1 and Lemma 4.2, we have
the following result for the partial LTR.
Proposition 4.1: Consider thec MEF integral
controller with the prediction type Kalman filter for
the disturbance covariance matrix Q and obscrvation

noise covariance matrix R given by
Q =diaglo, ] o/l], R=1, (4.13)

where o, 20, 0, 290. Then, as. g, — o, the input
sensitivity matrix approaches the matrix 2(z) defined

by (3.11).

Proof: Using the result obtained by Shaked [8] for
the choice of covariance matrices (4.13), we can
casily show that the Kalman filter gain matrix K,

approaches

K, =48,(CB,)" (4.14)
as g, — . Noting that

(A-K,)B, =0, (4.15)
we can show that (4.8) approaches (3.11). [

For the LQG problem, it has been clarificd that,
under the common choice of the performance index,
the feedback property obtained by enforcing the
conventional TR procedure can be achieved by the
partial LTR technique [4]. In the following, we show
that the same result holds for the integral controller.
Proposition 4.2: Assume that the transfer function
matrix  G(z) =C(z - A)"'B has a single unstable
zero g (|q|>1). Consider the integral controller using
the prediction type Kalman filter and the control
parameter determined by (3.19) where F is the
optimal feedback gain matrix for the regulator
problem under the performance index (3.13). Choose
the disturbance covariance matrix as o8B’ and the
observation noise covariance matrix as the identity
matrix. Then, the asymptotic input sensitivity matrix
obtained by letting o — o for this integral controller
coincides with the input sensitivity matrix for the
MSEF integral controller given by (3.32).

Proof: 'The input sensitivity matrix for this integral
controller has been given in [3] as
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Spr(2) =27 (z = 1)S(2){J + L(z] - A+ KC)' B},
(4.16)
where K is a prediction type Kalman filter gain
matrix for the plant (2.1). For the given choice of
the disturbance covariance matrix and  the
observation noise covariance matrix, the asymptotic
value of K as g — o is given by (4.14). Using the
matrix inversion lemma, we have. the following

identity:
Lzl —A+K'CY'B=2z"LB,G,(2)

v (4.17)
+ L(zl - A)'|B~B,G,(2)

Substituting (4.17) into (4.16), we can easily check
that the asymptotic value of (4.16) coincides with
(3.32). ' n

The above result justifies the enforcement of the
conventional LTR procedure for non-minimum
phase plants since the partial LTR technique has
clear system-theoretic meaning: it attempts to
recover only the minimum phase part of a target
feedback property.

The above result also suggests that, in order to
achieve the target feedback property achicved by the
partial LTR technique, it is not necessity to usc the
MEF integral controller which has higher order than
the conventional intcgral controller. Note that this is
truc only if the both controllers have been designed
by the common choice of the performance index
(3.13). The partial LTR technique admits a
performance index wmore gencral than (3.13).
Exploiting this design freedom, we can achicve a
feedback property that can not be obtainced by the
conventional LTR technique.

6. Conclusions

We have discussed an application of the partial
LTR techniques to integral controller design for
discrete—time non-minimum phase plant models.
We have shown that, for the common choice of the
performance index, the feedback property obtained
by enforcing the conventional LTR technique can be
achieved by the partial LTR technique. In addition
we  have pointed out that the partial LTR technique
provides more design freedom in shaping a target

+

feedback property via the seclection of  a
performance index.
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