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Abstract: A new Riemannian geometric iodel for the controlled plant
is proposed by imbedding the control vector space in the state space, so
as to reduce the dimension of the model. This geometric model is derived
by replacing the orthogonal straight coordinate axes on the state space of
a linear system with the curvilinear coordinate axes. Therefore the inte-
gral inanifold of the geometric model becomes homeomorphic to that of a
fictitious linear system. For the lower dimensional Riemannian geometric
model, a nonlinear optimal regulator with a guadratic form performance

—index-whicl contains the Riemannian metric tensor is designed. Since the
integral manifold of the nonlinear regulator is determined to be homeomor-
phic to that of the linear regulator, it is expected that the basic properties
of the lincar regulator such as feedback structure, stability and robustness
are to be reflected in those of the nonlinear regulator. To apply the above
regulator theory to a real nonlinear plant, it is discussed how to distort the
curvilinear coordinate axes on which a nonlinear plant behaves as a linear
system. Consequently, a partial differential equation with respect to the
lomcomorphism is derived. Finally, the computational algorithm for the
nonlinear optimal regulator is discussed and a numerical example is shown.

1. Introduction

Differential geometric approach is extremely useful for solving a
special class of nonlinear control problems [1],[2]. The linearization
problem is a typical case where the geometric approach acts effec-
tively. Based on Krener’s study [1] for the equivalence of control
systems, Isidori [2] has shown a linearization method by using the
veclor fields and their higher order Lie derivatives as the coordinate
bases. The method gives a exact solution to the linearization prob-
lem, but it requires the high accuracy for the system parameters
because of the nature of higher order Lie derivatives [3]. A dilferent
method of linearization using Riemannian geometric approach was
proposed by the authors {5], which does not require the higher or-
der differentiation. The fundamental idea is that in the state space
a uwonlinear system referred Lo appropriate curvilinear coordinates
will behave as a linear system. The equations which determine the
curvilinear coordinate system were derived for the general case. The
Riemannian geometric approach was also applied successfully to de-
sign the controller for bilinear plants [6].

In the Riemannian geometric approach the dimension of the state
space hecomes rather high because it is deseribed as a direct sum of
the state vector space in itsell and the control vector space. In this
paper it is proposed to decrease the ditnension of the Riemannian
space by a proper choice of the construction of the space, which leads
to decrease the computation time remarkably.

First, a lower dimensional nonlinear model is derived by express-
ing the coutrol vector space with the state space structure. The
model is constructed like the derivation of the geodesic curve on the

gravitational gauge field in Einstein'’s principle of general relativity

[4] and t*e integral manifold of this model becomes hiomeomorphic
to that of a linear systein.

In the second step, a new quadratic-form performance index is
introduced using Riemannian metric tensors, and the corresponding
nonlinear optimal regulator is constructed which is homeomorphic to
the linear optimal regulator. The optimal control is represented in
the state feedback form and constructed in terms of the homeomor-
phism and the solution of a pseudo Riccati equation. It is expected
that the basic properties of the linear regulator such as feedback
structure, stability and robustness are to be refllected in those of the
nonlinear regulator.

In the third step, it is discussed how to distort the curvilinear
coordinates axes fitted to the nonlinear system. Consequently, a
partial diflerential equation with respect to the hiomeomorphism is
derived.

Under the preparation of the above procedures, the partial differ-
ential equation is solved and the optimal control law is determined
by using the solution and the solution of the above pseudo Riccati
equation. Then the boundary condition of the gauge ficld is deter-
niined. Since the new model is homeomorplhic to the lincar system,
the boundary condition is determined by the condition of the linear
approximation at a suitable point.

Numerical examnples are shown to prove the effectiveness of the

proposed design method.

2. Riemannian Space and Geometric model

If the curvilinear coordinate axes is used as the state space coor-
dinate axes instead of the orthogonal straight coordinate axes, the
orbits of a linear system are observed as those of a nonlinear sys-
tem. Using this fundamental idea, a geometric model is derived. To
descrive the mnodel, in this paper, Lhe state space is regarded as a
Riemannian space which has the curvilincar coordinate axes. The
state vector £ and the extended control vector & (which has the
same dimension as the stale vector) are imbeded in this Riemannian
space. Accordingly, the space dimension of this Riemanunian model
is lower than that of the previous model by the authors which is
described in a direct sum space of the slate vector space and the
control vector space [5],[6].

Consider the nonlincar system

&= a (z)r+ Bu, (1)

where 2 is an n dimensional vector, u is an r dimensional vector,
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a (z)is an n x n matrix, B is an'n x r matrix.
Let zi’",l]" (= 1,..

coordinate system (2%), i = 1,...

,n) be two (1,0)-tensors on a curvilinear
,n, and A% BE (v = 1,..,n)
be two (1i,1)-tensors on (#'). Corresponding to these tensors, let
X1 0r, A% B be the tensors on a orthogonal straight coordinate
system (°). From the transformation formula of a tensor component

(sce Appendix A1), we have

oo 2 @
ur = %1]* 3)
ay = (1
& = =i B

From the definition of the matrix representation of a tensor (see
Appendix Al), a (1,0)-tensor is expressed as a column vector, and
a (1,1)-tensor 7%, is expressed as a matrix with (g, v) element 74,.
Therefore a linear systermn

d

m(t' AX+6U (6)

is represented as a tensor equalion

LR AR B (7)
d
Subslituting (2),(3),(1) and (5) into (7), we have
dghd¥Y @'t dit o,
—_——— + —_—
aEy dt 8xAATY di

ozt 93P . 9z

az* 9if - 91* -

— —_— o " Xm ——— a uﬂ
g a5 “Pow ¥ ¥ 95w 05 Phaze ®
Multiplying %ﬁ—: into (8), we have
dXY 9% 9@ d
= v? — A7 yr Y 1
dt N a9z 9FP9Fr di T A X0+ B u ©)

From Lhe definition of the Christoffel symbols {;T‘:,} (see Appendix
A2) the equation (9) becomes

X — di

‘“ +{p A}‘—,14’—,47 x4 B U, (10)

Theorem 1: If a linear system on the orthogonal straight coor-
dinate axes (#),i=1,...,n

= Ay X By O (11)

is observed on the curvilinear axes (#'),i = 1,...,n, then the system

is represented as

(M;" . - - i

—— e A]—U AL X"+ BL U (12)
Proof: I’roof is given as above.

As a special case, if .ﬁi’ and [§7 become two zero tensors and

d:r

X7 is chosen as ¥f = , the Riemannian geometric model (12)

becomes a geodesic on t.he curwhnear coordinate system (') [4).
&2z " 5 d#* dif =0 (13)
ez TN T T T '
Now, the Riemannain geoinetric model has a dual model. The dual
niodel is derived fromn the transpose expression of a linear model
d

SR = AU (14)

by observing on the curvilinear coordinate system instead of the
orthogonal straight coordinate system. Using a Riemannian metric
tensor g,,; two (0,1)-tensors X, and U, are induced from ¥ and
uv.

X = gu¥ (15)
I],, = y,,,,l]” (16)
From the definition of the matrix representation of tensors, (0,1)-
tensors are expressed as lhe row vectors. Therefore the equation
(14) is represented as a tensor equation

d arid 7 T3 -

—M—X =X A, +UB,, 17
where ‘A':‘ and ‘B‘;, are two tensors and have the following proper-

ties.

—

A = A (18)
B, = B (19)

From the transformation formula of a tensor component, we have

—u " 958 —~o
A, = 355 35 tAg (20)
s 9z* JFP ~—a
gt _ 9% 9T 4
Bv = Zeaw Us @)
Theoremn 2: If a transposed linear systein on the orthogonal
straight coordinate axes ('),i=1,.:.,n
dA_’ = TV - Tt
—dt—“ =X'A,+USB, (22)

is observed on the curvilinear axes (ii),i =1,...,n, then the system

is represented as
dx,
dt
Proof: From the transformation formula of a tensor component,

o dit — S ~f o ~p
—X,;W{,ﬂ,.}=xp‘.4,‘+llﬁ‘3ﬂ (23)
we have

- 9z
Xg——
#ozr
- . OFf

”ﬂﬁ

=
I

(24)

RN
]

(25)

Substituting these equations into (22), we have

5 di* 9%

P 9 or
9P —,
0 1

dX, 958 +
di azr

= Xp9 ,,'.A,,+ll,, B, (26)

(26) on the right side, we have

Multiplying

dx, + 7 di’\ 9P 9
dt " "PTdL 952050 die
8if __, 9"

b F— ()1“
= 41}50 ) ’-A"a )

+ly B o (27)

Replacing z¥ in the equation (12) of Appendix A2 with £, and
considering the relation

aziu
FERTETi (28)

— 629 —



we have

9% IEr 9ir —~
el Tl PN
IF O 0F dT7
Substituting the equation (29) into (27) with (20) and (21), we have
(23). Q.E.D.

(29)

3. Homeomorphism

In Lhis section, the mapping is clarified between two integral moni-
lolds of the Riemaunian geometric model on the orthogonal straight
cootdinale system and the curvilinear coordinate system. Let [
and & be two coordinate neighborhoods, which have the coordinate

system () and (#), respectively. On U n ¥, we have

oz
P = 7
dz¥ = 75 (11,» (30)
T
d&¥ = Pre dz7, (31)
Let 74 and T) be
oz .
™ o= 75 (32)
9
T = —. 33
; 35 (33)
Then,we have
™ T} =§,, (31)

where §% is Kronecker’s 6. If ) and 7)) are determined on all over
U N, then the coordinate space (%) and (&) are also determined
on it by using the relations (30) and (31).

From the transforination formula of a tensor component on ¥ T,

we have

v = % A =T) A (36)
Xo= %i—: = X, (37)
Yy = :a)j: X, =17 A, (38)

Taking a different view of these relations, 7 and T can be regarded as
the mappings between X*, X, € U and i’”,zf’, € U. Considering
the equation (34), T becomes the inverse mapping of r. If rand T
are both continuous mappings, then 7 becomes honieomorphism
between two integral manifolds.

Substituling these 7 and 7 into the equations (4) and (5), we have

AL = TIANT (39)
BY = TG4 (40}

Diflerentiating (32) and (33) with t, we have

dr?
rll'Y = ] 1
a7y di* 9*F7
L= 42
dt i dTrdEv (12)

Therefore, the Riemannian geometric model and its dual model be-

come

dtr - drh o . -
- = (A -Ti=h) &+ 5l ar (43)
d.X - — drs -
- = Xp(TIA, T4 — — TR U B, (41)

These equations are derived by substituting (32),(33),(39),(10),(41)
and (42) into (9) and (27).

4. Nonlinear optimal regulator
Theorem 3: Consider the Riemannian geometric model (43), and

consider the performance index

VT e e i
J= 5/ (W gu B 4 0P gist9)l, (45)

to
where g;; is the Riemannian metric tensor. Suppose there exist the
homeomorphism 7, then the control law which monimizes J is derived

as

ur = -T)78, $hr, X+, (46)
where the tensor S% is the unique solution of the pseudo Riceati
I3 P
equation
(ISZI cm jn am gn cmpntnp! v M = -
T,— SnAn+ An‘-u—snﬁy Bu5;4+-/: =0, (4')

satisfying the boundary condition

Spry=o. (48)

Proof: Since the Hamiltonian function 1T is a scalar function
and is invariant to the transformation of the coordinate system, the
caluculus of varintion to the control problem can be extended to
our Riemannian geometric case. The proof is given by following
the procedures of section 9.3 in [7). The Hamiltonian 11 for the

Riemannian geometric model with the cost J of (45) is
0= g ¥+ g
= (X527 + Ul gi3l7)

C cdrH L L. -
+ ¥ [(T] AN A — T{,mﬂ) X7 4 B2 U, (49)

where 15 is the costate covatiant vector. The canonical equalion is

derived as

dpe OH
T e
o - cdr#
= =Xigi — [TIANTY - T (50)
with the boundary condition
P.(T)=0. (51)
Along the optimal trajectory, we must have
aH - -
0= g = Wain+ 3B, (52)
I then follows that
Uy =l ygj0 = —; 57, (53)

Suppose that
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to = XS, = XTI 8, (54)

then, by substituting (54) into (50), we have

‘]1/'0 v jBs pm i drf
==X, — + X v 2 55
@ ¥, 175 ./{ TS“ T (55)

On the other hand, hy differentiating (54) with t, and using the dual

maodel (14) and the cquations (53) and (54), we have

dif S i—m ,  dT}

_(_“_ = '1' {Tan"An Ty di 1’?
ki dT}
~Ti, e i, 'BV'}T‘S" o+ G S
’ I‘ 3 dTa 3
+; 7” 4+ TS i (56)
[¢
Thus we have
Do oo™ en w _ Bogi amon kiR v
= MTLALS T — TS riBs B Ti SSh T
ds, drt
+X5T] "y TS = 57
dt e "odt 7
Comparing (55) with (57), we have
0= X TL + SmAY +TA, 5
cm
_ T rave ST
~SurRBtiB, TiSY + R (58)
Thus we have the pseudo Riccati equation
415"’ - -
i+ SRAL AL S - SUBTE LS 467 =0,
(59)
Cousidering (54), the boundary condition (51) becomes
STy =0. (60)
Using (53) and (54), the optimal control law is given as
U, = —XNTi85 B, = X TiS" B84 (61)
Thus we obtain
ur = U
= —XTiS,Bh g
= _,I’jy-’l‘gkiT:;S""B"‘.r:gVP
- —i”‘qk"]’"é:"[;"‘ ny-y,r
= -X r”r’T'S" ST TAT,
= ~Xrri8 808460 T,
= XS T (62)

The solution $% of the pseudo Riccati equation, which is the special
case of the Riccati equation, has the symmetric property ( see Lemma

9-5 i [7]). Therefore, by using (19), we obtain

Tt Gon i vk °
V=T8S At (63)
On the other hand, the sullicient condition of a local minimum of

1 is clear, because using theorem 5-1 and corollary 5-1 in [7], the

following relations are always satisfied.

’H

FTvare = Btie = v >0 (64)
an %
e Jaa 0
< OXTON~  aXyalle ) = ( s ) >0 (55)
2URaX=> aU>0U- 0 gy
Q.E.D.

5. Gauge field

In this section, the method to deform the coordinate frame of
a nonlinear plant and adjust it to that of a fictitious linear plant.
is discussed. On the curvilinear coordinate {rame, the Riemannian

geometric model

di
dt
must be observed as the nonlinear plant

. —dE* - . -
= (A, - {,.n}:—t)x" + B U (66)

X Y
‘i =#(X) T+ B4 (67)

Since the nonlincar plant (67) is represented as the tensor equation

X Soso
% = al(¥) 2 + BY, a4, (68)

we have the following relation by comparing (68) with (66).

— d& .
Y - = @] (’Y) (89)
This relation holds good regardless of the control #7.
Theoremn 4: Let Sp be the integral manifold of a linear system
dx

—_— 'V » I‘
= AL A B (70)

and Sy be the integral manifold of a nonlinear system

dxr - - -
o = u'z‘(,l) X4 37‘ u*, (71)

A homeomorphic mapping r belween Sy, and Sy satisfies the fol-

lowing partial differntial equation

o7h
ax*
Proof: Substituting (32) and (33) into the equation (10) of
Appendix A2, the Christollel syinbols become

—= (@) (X) X7 + B U] = Ay — 18 & (b). (72)

— art
) =TIk (73)
Using (73) and (39), the equation (69) become
drk =
T)A T ;’,—T,Z—# =al(X) (71)

Since the relation (69) which determines the homeomorphism 7 holds
good regardless of the coutrol U7, 7 becomes the function of X7

only. Therefore we have

drf 9t 4¥*  orf 5Y L A
»o__ " - " & o A v
Ry el ME) X+ 8 0] (75)

Substituting (75) into (74) and multiplying r'z into (74) on the left

side, we have a partial differential equation (72). Q.E.D.

6. Coordinate condition

In this section the necessary and sufficient condition with respect
to the existence and the unigueness ol the homecomorphism is dis-
cussed. The characteristic equations of the partial differential equa-

tion for the homeomorphism are given as
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dx

= a%(X) X B ur (76)
dt ’ ,
drf - o
—-(H“ = Afry — B (X), (77)

IT the control U* and the system function Fﬂ‘,(ff) are selected as
simooth functions, then the homeomorphism exists uniquely by con-
sidering the conditions about the existence and uniqueness ol the
solution of an ordinary differential equation. When the orbits of a
nonlinear system are mapped to those of a fictitious linear system,
the center of mapping, which is not always a point, does not move,
so that we have

dr? - -

B FRv B

ke A wTh = Ty &} (Xo) = 0. (78)

This relation means that A is similar to & (,i'n).

Theorem 5: If the following relations are satisfied on the center of

mapping

A=ragr ' £0, detr#0, (79)

- o da (X . . . .
and a (X)), ia%—z are continuous, then the partial differential equa-
tion for the homeomorphism has the unique solution 7 .

Proof: Proof is given as above.

7. Algorithm and nuwnerical example

The optimal control law in Theorem 3 is constructed by using the
solution of the partial differential equation for the homeomorphisin
and the solution of the pseudo Riccati equation. When the homeo-
miorphism is seeked, it is important to specily the region where the
integral manifold of a nonlinear model is in contact with that of a
fictitious linear model. In this paper the origin O is regarded as
the point on which two integral manifolds are contacted. Therefore,
considering Theorem 5, the matrices A and B of a fictitious linear

system and 7y are selected as

A=&(0), B=B(0), ro=1. (80)

By using these conditions, the homeomorphism is calculated directly
from the partial differential equation. Nainely, the difference equa-
tions are solved with the boundary condition 75 = 1.

Since a real nonlinear plant is represented as the form of (1) instead

of (67), the control u must be constructed by the condition
=X, Bu=BU. (81)
Using Theorem 3, we have

w = B'BU=-B'TBrTBS+ ¥
-B'TBBSrz, (82)

where B! is a generallized inverse of the matrix B.

Example Consider the nonlineat systern with van der Pol type.

i T _ 0 1 ( ) )
dt\ 2y | T\ -1 —e{(z)* -1} T3
1 0 uy _
+<0 l)(llg), e=1.0 (83)

Simulation results are shown in Fig.1.

Fig.1:  Trajectories of nonlinear regulator

8. Conclusion

By Choosing a suitable Riemannian space, a new lower dimen-
sional geometric model (12) and its dual model (23) have heen pro-
posed. For this Riemannian geometric model, a nontinear optimal
regulator with the quadratic form performance index which contains
the Riemannian metric tensor g;; has been designed in Theorem 3.
The integral manifold of this nonlinear regulator is_homeomorphic
to that of a fictitious linear regulator. Corresponding to the nonlin-
car plant, the homeomorphism is determined by a partial dilferential
equation (72). Furthermore, in Theorem 5, the conditions with re-
spect to the existence and the uniqueness of the homeomorphisin
have been shown. Since the dimension of the Riemannian space be-
comnes Jower than that in our previous papers, the computation time

of the nonlinear regulator has been improved.

References
[1] AJ.Krener: On the Equivalence of Control Systewns and the Lin-
earization of Nonlinear Systems, SIAM 1. Control, 11-4, 670/676
(1973)

[2] AJsidori: Nonlinear Control Systems: An Introduction, 2nd Edi-
tion, Springer-Verlag (1989)

[3] L.Cong and P.l.Landers: Robust control design for nonlinear

uncertain systems with incomplete matching conditions, Trans.
Inst. MC, 15-1, 46/52 (1993)

{4] P.A.M.Dirac: General Theory of Relativily, Johu Wiley & Sons
(1975)

(5] Y.Izawa and K.llakomori: Design of Nonlinear Regulators Using
Riemannian Geometric Model, SICE Trans. 16-5, 628/634 (1980)

[6] Y.lzawa and K.lakomori: Coutrol of Bilinear Ileat-Exchanger
Systems with Saturations in Manipulated Variables by Riemnan-
nian Geowetric Approach, SICE Trans. 27-6, 516/553 (1991)

[7] M.Athans and P.L.Falb: Optimal Control, McGraw-1Till (1966)

— 632 —



Appendix
Al. Definition of tensor and its representation by matrix
Let U and U* be an n-dimensional vector space and its dual space.

An (r,s)-tensor F is deflined as a multilinear map

F: Vix...xV'xVx---xV—R,
—— ———

r s
where R is a set of numbers in which the addition and the product
are naturally defined.

Let U and { be two coordinate neighborhoods on an n-dimensional
,z") and (&',...,3"),
respectively. For each x on U, let T,(M) be a tangent space of M al x,
then (72, ..., 32) becomes a basis of T (M). If To(M) is selected
ag V*, then the dual vector space V has a dual basis (dz!, ..., dz").

manifold M with the local coordinate (z!,

Therefore an (r,s)-tensor F is redefined as

F= Z F'!' i ] .”®__(?'__®dll'l®..4®dlj.’ (1)

Jureds 0_,/:. Dz
Jrede
where ® ia a tensor product, and r and s are a contravariant index
and a covariant index, respectively.
Changing the coordinate system, the components of a tensor F on

Un U are transferred as

Fo (2
OF# Eke Jziv fzis - At

Using the Einstein sumimation convention, the symbol X is usually
omitted.

Since the tensor is a multilinear map, a tensor can be expressed
as a matrix.
Definition: In an n-dimensional space an (r,s)-tensor is expressed as

an n" x n° matrix whose

+n" (36 - 1),
+ w71 = 1)

lir + n(iy-1 = 1) + 22y = 1)+ -
Jo#n(ar = )+ 0?(oa = 1)+

element is £}’

A2. Definitions and properties from Riemannian geome-
try

Let U bec a coordinate neighborliood which has the orthogonal
straight coordinate system (2',...,") and U be any coordinate
neighborhood which has the general coordinate system (3,...,#").
Let O and P be the origin and any point on U N U, respectively.
The coordinate of the vector OF becomes (z',...,2"). The tangent
veclors with the direction of the orthogonal straight coordinate axis

are represented as

_ 0P _ a3 o2, _ (0
T T lew ar T o

D

1, ..,0).

3

Furthermore, the tangent vectors with the direction of the curvilinear

coordinate axis are represented as

208 a3 "
gz = Ga ) @

€y =

"The Riemannian metric tensor gg; and the Christoffel symbols {3*,.}

are defined as

. az' 97
g = (€, &) = 57 a3 (5)
= l " 09}\[: aﬂk 97,1
{/\ }‘} = k( EED i,;‘ - 85"‘ )1 (6)
where g** are defined as
23> 9z*
- Jki = 6'\1 = WW (7)
Using the equation (5), we have
23> ozt
Ak
; o' 9zt ®)
g 0% 07 + oxt 9%z )
ax* T 0ik0zr 8% T O3k 9F'aF
Thus the equation (6) is represented as
g a?—i
i} = 5 505 (10)

Let (z',...,z

from (2!,...,

") be a curvilinear coordinate system that is different

z") and (#',...,%"). Then we have

s 8 9% st
dzrair T 8z* 9zt 9zr

2z 9zt 92t 8% 9t
= Pzoxt 052 938 | 358 90 05n {an
9z J  dzv 9%
EERY L FEERR L
0%zv 9z' 810 8z 9
= wow o7 oz t 9w avean (2

Using (10) and (11), we have

{T) _ 83¥ 9z* 9z 9z¢ 9z ; 6716
Mul T 92k 937 Dx<dz? 03* 0ir | 95 Dzd 9T OTF
_ dx* 9z¢ xb & zF* 9%zt 13
= seram om0 ¥ g aman (13)
Multlplymg a:,, into (13), we have
ozt [, %k
Bi" ) = aﬂ TAURAS s (1)

— 633 —



