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Abstract - This paper presents a CMAC network
based controller on the basis of Lyapunov theory. CMAC
network is employed to approximate and to compensate
the uncertainties induced by inaccurate modelling of the
system. For the improvement of robustness under the
bounded disturbances and the approximation error of the
CMAC, the adaptation scheme with a deadzone and an

additional control input are developed.

I Introduction

Recently, the design of neural network based controller has
been extensively studied by numerous researchers. Neural
networks make it possible to control an unknown nonlin-
ear plant accurately without a stringent prior information
about the plant dynamics. llowever, the major problem
introduced by such a network based controller is that the
exact error gradient information can not be obtained since
we do not know which plant input generates the desired
output in general. Moreover, the learning convergence is
not fast enough to be applied to on-line direct control

scheme.

The CMAC learning controller proposed by Albus has
conceptually simpler structure and faster learning conver-
gence than other artificial neural networks. However, the
input region of the CMAC controller should be bounded
and quantized a priori. This property requires an addi-

tional control scheme which stabilizes the system outside

the bounded input region.

In this paper, we propose a CMAC network based
controller using Lyapunov theory. Since CMAC is essen-
tially a controller in a table look-up fashion which is adap-
tive, the stability can be effectively analyzed using Lya-
punov stability theory. For the improvement of robustness
under the approximation error and bounded disturbances,
the adaptive control scheme with a deadzone and an ad-

ditional control input are employed.

II Description of CMAC

CMAC is a table look-up algorithm which is adaptive by
modilying the contents of the table using a learning al-
gorithm. It has generalization capability (similar inputs
produce similar outputs) due to the distributed storage of
information. As shown in Figure 1, CMAC is composed
of a mapping from an input space to memory locatlions
and a learning algorithm. Given a stale in input space,
the operations of CMAC are to find the corresponding
memory locations for that state, to sum the content of
these memory locations to get the response of the CMAC,
to compare it with desired response, and to modify the
content of these memory locations based on the learning
algorithm. A conventional mapping would be to assign
one memory location for each input state. In this case
the required memory would be extremely large. For ex-

ample, a system with N inputs, each of which can take on
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R different values, would have RV memory locations. To
reduce such massive memory locations, Albus (1] derived a
mapping algorithm inspired by the human cerebellum. In
this mapping an element in the input space is mapped into
many memory locations. The number of memory locations
assigned to each input element is called the generalization
size, Ny. Two input elements that are closest and differ-
ent each other will have their Ny — 1 memory locations in
common. So the number of total memory locations needed
is reduced to Ng(l—% N,

The learning of the CMAC is typically based on the
desired training data pairs y and u4(y), where uy4(y) is a
desired network output in response to the input y. The

typical update rule has the fo"oWing form :

Aw; = n(ua(y) — ue(y)) ()

where u.(y) is the output of the CMAC. In control prob-
lems, it is difficult. to obtain the desired training data pairs
y and uq(y) a priori, i.e., we do not know which input gen-
erates the desired oulput in general. The next section de-
scribes a mathematical representation of the CMAC and

how to design a controller using CMAC.

IIT Controller Design using CMAC

Let the mapping H(y) represent a mapping of an input
element into N, generalized memory locations, i.e., the re-
gion of the mapping H(y) is a set containing N, general-
ized memory locations corresponding to an input element

y. Then the CMAC output u.(y) can be expressed as
uely) = D wix(a;) (2)
=1

where m js the total number of actual memory, w; are

weight terms, a; represents the jth memory location, and

the characteristic function x(a;) is defined as

1 ife; € H
x(es) = e € Hly) ®)

0 otherwise

The above expression of the CMAC output is similar to the

linear regressor form which appears {requently in adaptive

control theory. So, the design technique developed in the
area of adaptive control can also be applied in a CMAC
based controller design. We illustrate how this approach
can be applied to the CMAC based controller using a sim-

ple example.

Let us consider a simple mechanical system
I+ Mz)=7 (4)

where 7 is the input torque, & is the nonlinecar friction
term, z is the output displacement, and I > 0 is the total
inertia of the system. It is assumed that only the position
and velocity of the system can be measured. So, the un-
certainty to be compensated by the neural net should be
expressed in terms of the position and velocity. For this

purpose, we propose the control law for (4) as

r o= Iz + il(I) + 7, (5)
B 2 i.4 KJE+KE (6)
i 8 oy-z (M

where [ and  are the estimates of I and h, respectively, x4
is a desired trajectory, and 7, is the output of the neural

network.

Using (4) and (5), we obtain the following equation :

I+ K,z + K3 = Iz, + k() — 1) (8)
where [ 21~ fand h & h - k.
Let us define e; as follows :
&1 = + A& (9)
where A > 0 is chosen so that transfer [unction '—,—fﬁ—k’
is strictly positive real. Then there exist the positive defi-

nite matrices P and @ such that

il

ATP+ PA -Q (10)

PB = CT (11)
where the matrices A, B, and C are the matrices of the

following minimal state-space realization of the error equa-

tions (8) and (9) :

.
1l

Ae + Bl g(E,,) - 1)) (12)

I

€1

Ce (13)
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where e = [x z]T and _q(:z:,,a:) Ia:, + h(z). The role
of the CMAC is to compensate the uncertainty g(%,, %) so
that the error dynamics (12) may become asymptotically
stable. We assume that the uncertain function g(&,, ) can

be represented as

m

g(Z,, Zw x(a;) (14)

i=1
where w} ate unknown constant weights. The CMAC out-

put may be expressed using the variable weight w; as

U = ijX(“j)- ‘ 7 (15)

Then the difference between the actual uncertainty and

the CMAC output ¢an be represented as

m

9(En @) —ue =y 1;x(a;) (16)

=
A, )
where @; = w; ~ w;.
The adaptation law for the w; can be obtained using
the following Lyapunov function :
= eTPe + — Z (17)
J—l
where 5 > 0 is the adaptation rate. Dilferentiating (17)
with respect to time and from (12), (13) and (16), we get

E: (18)

le

V =—eTQe+ —el Z w;x(a;)
Let the updating rule for w; be
w; = nx(a;)es. (19)
Then (21) becomes
V=-eTQe<0 (20)

which represents the asymptotic stability of the system.

IV Robust Controller

Since the uncertainty can not be exactly represented by
the neural net and the output of the CMAC may contain
disturbances, we should consider an approximation error
of the CMAC and disturbances to improve robustness of

the controller.

Let us include these effects in (14) as

g(@, 1) =Y wix(a)+elt)  (20)

=1

where €(t) represents the eflects of the approximation error
and the disturbances. It is assumed that the magnitude of
¢(t) is bounded I;)v an unknown positive constant a such
that

(0] < o @
Since the constant a is assumed to be unknown, it should
be estimated using a suitable estimation law. Let us de-
fine the estimate of a as & Using the estimate of o an
additional control input should be added to suppress the
effect of €(t). For this purpose we propose the followiﬁg

theorem.

Theorem 1 Let us consider the follo{uing estimation and

control laws :

when |eq| > 6,

& = fleil, (23)

'U)J'——‘-O,
&=0, (24)
T:ii,+h( )+a-1+rn

where B and § are arbilrary positive constants. Then the
control input is continuous and the closed-loop syslem is

uniformly ultimately bounded.

Proof: Let, Q and €, be defined as Q; 2 {t|]es(t)] > 8}
and Q; = {t | |es(t)] < 6}, respectively so that ; and ),
are partitionings of R*. Let us define a Lyapunov function

candidate for the system (12) as

1 1
V=CTP6+EZ‘L.;+7—H'&2 (25)

where @ 2 a — & Whent € Q,

. - 2 oL . €1
— eI z . . () — G—
Vo= —e¢'Qe+ 1“‘(?:‘ 0;x(a;) + e{t) - &)
2 & . 2 .
fl Dt — — . 2
+]1’j_lw]w, Iﬂaa (26)
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Using (23), we get

V< —eTQe <0, (27
When ¢ € §,,
VvV = —eTQe+ e Z x(a;) + €(t é%‘—)
< —e"Qe+b(t) (28)

where b(t) & 38(37L, [jlx(a;) + &). Since V<Oforte
, V() is continuously decreasing and |w,| and |&| cannot
be increasing for ¢ € ;. Further, for ¢ € §,, |w;| and |&|
remain constant. Thus b(t) is a bounded function since

x(a;) is bounded. So uniformly ultimate boundedness of

signals can be obtained. 5

Remark :  In the above discussion we assume that
the input signals of the CMAC are always confined in the
bounded input space of the CMAC. However, there is no
guarantee that the controller acts as we assumed. In this

case we may use the hybrid control scheme shown in [4].

V Conclusion

In this paper we have proposed a CMAC based controller.
A mathematical model of a CMAC are described and us-
ing this model a robust CMAC controller is proposed on
the basis of Lyapunov theory. Using the proposed design
method we can design the CMAC based controller more
analytically. The proposed controller employs the dead-
zone technique in robust adaptive control and a sliding

control method to improve the robustness.
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