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Abstract A method of trajectory error estimation of a
hypersonic vehicle, by a covariance analysis technique is pre-
senled and discussed. The method itself is a wellkown tech-
nique, however, the thema has been rarely treated. As the im-
portance is increasing, it is explained here and some of our

newly deviced techniques are also presented.

1. INTRODUCTION

The trajectory estimation error propagation study by the co-
variance analysis has been already conducted in early 1960's ,
and the program has beeen developed for example the
MATS® (The Mission Analysis and Trajectory Simulation
Program). which has been applied from Apollo project
through the trajectory estimation of the Minnitman's multiple
warheads. The program has been developed by TRW Corpo-
ration and introduced to Japanese NASDA (National Space
Development Agency) through Mitsubishi-TRW Corporation
(current Mitubishi Space Software Corporation), which has
been employed for the guidance and orbit control of Japanese
BS (Broadcasting Sattellite ) and CS (Communication
Sattellite). Therefore the technique itself is wellknown to our
space engineer, however, the experience of the recent Gulf
War has kept our attenlion again to the importance of the tra-
jeclory estimating technique of unguided hypersonic vehicles.
We have been studying the technique for intending to apply
for future anti-ballistic missile system, or re-entry phase of a
space vehicle. As the imporiance of the technique is increas-
ing, it will be of some use 1o the readers to explain the method
with some of our newly deviced technique, and some experi-
ences.

2. THE EQUATIONS OF THE
COVARIANCE PROPAGATION

In this paper, the trajectory error estimation process of arela-

tively short range surface launched vehicle is explained.

Let the vehicle system equations are expressed as follows.
X = f(x)+w(t) )
where x is a state vector, and w is a pure gaussian random

process. Now we separate the x vector with the nominal state

vector x* and the deviation vector from x*; dx, then
k=i +8t=f(x )+ /I Sx+wt) 2)
Let x* should salisfy the next equation

X = f(x")+ E[w(n)] 3

where E expresses the expected (avarage) value, then

&k = 9f / o - Gx + u(r) “4)
u(t) = w(t) — E{w(r)] (5)

Let us replace this small deviation vector as x, and Jf /ox

which is a time function as F(¢), then
x=F(t)x+u(t) (6)

where x(t) is a stochastic process state vector, and u(7) be-
comes a white gaussian vector.

Let O(¢) be the intensity matrix of u(¢) (the integral of the
auto-correlation function of 1(r)), then the propagation of the
covariance matrix of x; X is expressed by the following
equation.”

X =FWOX+XFT(1)+0w) 0
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where X is expressed as
X =E{[x- EW) [x - E(0)') (®)

This derivation of the equations is a little delferent from that
of Ref.(2). The rcason is as follows. In Eq.(6), if u(r) is a
collored noise, the deviation value of x often becomes quite
large and our quasi-linearized equations becoine inadequate.
Therefore we have included the bias components of w(f) into
Eq.(3) and elliminate the effect to x in Eq.(6). Another reason
is that the vehicle flight time is relatively short, therefore the
effect of unknown bias noise is assumed to be small. As the
expected value of x follows to Eq.(3), and () is a white
gaussian noise, the expected value of the perturbation about

x* is zero, therefore
X=E(x-x") 9)

3. CALCULATION METHOD
The employed vehicle is a vertically launched first stage sur-
face to surface missile with the range about 950km and maxi-
mum altitude about 300km. For a covariance error analysis
within this range, the dilference between employing the flat
earth model or the circular earth model is very small, therefore
for simplicity, we explain it by employing the former. (How-
ever, for a precise trajectory simulation, we need the oblate
spheroidal earth model, and the geopotential function ex-
pressed in terms of zonal, tesseral, and sectorial coefficients,
as well as the launching point data in relation to the geodetic
altitude, earth rotational rate and wind model) By employing
the point mass and the flat earth model, the missile equations

are given as follows.

v=(Tcosa— D)/ m—-gsiny (1)
¥ =(L+Tsina)cos¢/(mv)—(g/vicosy (11)
W = (L+Tsina)sing/(nv-cosy) (12)
X =vcosycosy 13)
y=vcosysiny (14)
hi=vsiny (15)
i==THg 1Ig) (16)
where
L=1/2pv’sC,, C,=C,(a-a,) (17

D=112pv’sC,, Cp=C,y+kC; (18)

The aerodynamic derivative coefficients C,, , C),, and k are

given as functions of Mach number M, which is a function of

v and h, and the air density p is a function of by

p=ph), M= M(v,h) 19
Cra =Cpa(M), Cpy = Cpo(M), k=k(M) (20)

By employing Eqs.(10) through (20), the missile nominal tra-
jectory from launching to landing with noise-free condition is
obtained first. If there is any predicted and modeled bias error,
these equations are modified by adding the E[w(t)] of Eq.(3).
The error estimation of the drop point is implemented through
three phases.

In the first phase where the missile is boosting and the infra-
red ray emanated from the exhaust is observable from the
sattellite ‘or the airborne optical aparatus, the missile states

v, y.W,x,v,h, and m are estimated by an extended Kalman
filter. It is assumed that the missile flights unguided after the
boost, and it can be observed only in the boosting stage. Let #,
be the time when rocket engine is stopped, then the covari-

ance matrix X(t,) of the state vector x at f,

x = (8v,87,8y, 8¢, 8y, o)’ 20

gives the dominant effect for the error propagation. In
Eqs.(10) through (16), m is treated as a state variable to be

estimated, however, after the engine is stopped, m=m(1,)is
constant. Therfore the effect of the estimation error of n (#,)
is studied separately, and is not treated as a state variable in
(VAN

In the second phase of the error analysis, Eq.(7) is integrated
in accompany with Egs.(10)~(20) by employing the x(1,)
and X(f,) which are oblained in the first phase as the initial

values, and obtain (he error propagation until the missile ap-
proaches to the atmosphere, e.g. at 80km. In the calculation,
F(1) = df / dx is evaluated along with the nominal trajectory.
Let the final time be noted as ¢,.

Until this time we have employed the point mass model, be-
cause if we employ the rigid body model, states estimation by
a Kalman filter and calculation of the covariance propagation
becomes quite complicated. However, from the re-entry
phase through collision to the earth, the error propagation is
very sensitive to the employed vehicle model, therefore at
least six degree-of-freedom rigid body model has to be em-
ployed. In the third phase of the error analysis, the following
axis symmetric missile equations of motion with the flat earth

model is employed.
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p=M 11 _ (22)
g=[M -1l 1, (23)
F=IM, ~(p - Dpqll I, (24)
d=p+(g-sp+r-co)tand (25)
6=q-co—r-s¢ (26)
W =(q-s¢+r-co)lco 27
w=F/m-qw+rv (28)
v=F/m-ru+pw 29
w=F /m-pv+qu (30)

where u,v,w and p.q,r are the velocity vector components
and angular rate componeunts, F,,F,,F, and M,,M M, are
the force vector components and moment vector components,
all of them are measured in ‘the missile body fixed axes, re-
spectively. In these equations,” ¢"and " s " are the abreviations
of "cos" and "sin", respectively. The inertial coordinates of

the missile are obtained by integrating

X=u-cOcy +v(—cPsy + sgsbcyr)
+w(isgsy +cosBey)  (3))
y=u-cOsy +v(chey + s¢sOsy)
+w(=s¢cy +cpsOsy) (32)
i=—-u-50+v-s¢pcO+w-cec 33

In Egs.(22) ~(24), the following is assumed.
IM:I I =IZZ=IT‘ ,l_\'=IJZ=[_\'Z=O (34)

Ay
The Euler angles y,0 and ¢ are selected so that the body
coordinates are taranslated to the inertial coordinates through
the rotation ¥ , about z axis, and @ about y axis and ¢ about
x axis in this order. In the simulation, other aerodynamic coef-
ficients, which are not employed in the point mass model,
C

suchas C g

ozt C,, etc. are required. The initial condition of
the states of the third phase, x(1,) is distributed about the
x *(1,) with the covariance X(1,). We have conducted Monte
Carlo simulations in this phase. By combining the results of
phase 1 through 3 and with some statistical treatinent, we can
obtain the hit point probability distribution of the missile. As

for the estimation error about the m(#,) or other constant pa- -

rameters, we can estimate the effect just by conducting a small

number of simulations without a difficulty.

4.0THER DISCUSSIONS
Figures 1 and 2 show an example of flight simulations. Figure

1 shows the missile down-range versus altitude trajectory,

and Fig.2 shows the time histories of the missile velocity and
the flight path angle. The missile is vertically launched and at
its boost stage, the attitude is controlled to enter into a ballistic
trajectory. The attitude is trimmed even in a very low air den-
sity, and the angle of attack is constantly increasing, but rela-
tively small in the ascent phase. In the desent phase, a is still
increasing to reach the maximum value of about 40 deg. In the
re-entry phase, and at about 80km's altitude, a quickly de-
creases and induces a Phugoid mode. This Phugoid mode
makes it difficult to implement the covariance analysis, there-
fore the Monte Carlo simulations are conducted in this phase.
The employed airdensity models in the MATS of those days
are US standard 1962 and ARDC 1959 etc. Recently we can
employ more renovated models, but as far as the relatively
short range ballistic vehicle in the paper is concerned, the ef-
fect of employing the different air density model is very
small. However, in the case of a space vehicle which stays in
an orbit longer time, we recommend to employ the newest
version of CIRA, Jaccia or other éophis(icaled air density
model. In the case, the point mass model is described by em-
ploying orbital element parameters, and the precise gravity
model must be employed. In practice, u(t) in Eq.(6) or Q1)
in Eq.(7) does not give large effect in our case, because the
effect of X(1,) is dominant, however, it is useful to calculate

the effect of the applied noise in an arbitrary time (for ex-
ample, the effect of the collision of a small meteorite). In the
paper, the missile body is assumed to be symmetric. In prac-
tice, the existance of a small asymmetry induces a roll, and
unless a roll stabilizing control in the missile, a small o and
B couples with the induced roll and cause a roll resonance,

which makes more difficult to estimate the missile trajectory.

CONCLUSION
A method of trajectory error estimation and the calculation of
hit point error probability distribution of a surface to surface
missile is proposed and explained in detail. The algorithm is
developed to combines the point mass model simulation, the
raigid body model simulation and covariance propagation
simulation. The method gives a quick overview of the estima-
tion error of the missile drop point distribution, without con-

ducting massive numbers of Monte Carlo simulations.
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Fig.1 Missile nominal trajectory
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