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Abstract

This paper presents numerical analyses of the
low speed yo-yo maneuver of an aircraft to
determine controls of thrust, bank-angle and
angle-of-attack in the subsonic region in terms of
the optimal control theory.

Minimum-time flight paths are numerically
calculated to overtake an opponent aircraft flying
in some steady-state level turnings under several
assumptions: both of aircraft are point masses and
maneuver in the 3-Dimensional space. Their
weights are considered constant in the maneuver.

As a result of the analyses, the effectiveness of
the low speed yo-yo maneuver is shown.

Nomenclature
a : speed of sound
Aw : wing area of aircraft
C, :drag coefficient

Cyo  : zero lift drag coefficient
: lift coefficient

(A
Cin  : lift coefficient curve slope
Cr : thrust coefficient
D - drag
Iq : acceleration of gravity
1,J . performance index
L : lift
m : aircraft mass
M : Mach number
n : load factor (normal acceleration in g's)
t :time
T : thrust
\% : velocity
w : weight of aircraft
X : horizontal position (range)
v - horizontal position (cross range)
z : altitude
a : angle of attack
Y : flight path angle
3 : induced drag factor
P : atmospheric density
o : bank angle
¥ : heading angle
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Subscripts

( ), :final value

( ), :initial value

: maximum value

: minimum value

( )o :quantity for pursuer
( )r :quantity for evader

I. Introduction

Maneuverability is an important factor for
many kinds of fighter aircraft to evaluate their
performance.  Especially, the ability of
acceleration, which is one of the indices to define
the easiness and smoothness of achieving required
maneuver or reaching a position in a definite
period of time, often determines the performance
superiority of aircraft.

The purpose of this paper is to present flight
paths and a set of controls of aircraft for
minimum-time 3-Dimensional turn to overtake an
opponent aircraft flying in steady-state level
turning with some constant velocity and initial
distance from the pursuer, in order to verify the
system trade-off among the performance
components during the optimal maneuver in the 3-
Dimensional space. Resulting optimal maneuver
for pursuing aircraft turn out to be a low speed yo-
yo maneuver, which dive in the first half of the
flight to increase the velocity and then rise up in
the latter half.

This maneuver can be formulated and resolved
with the optimal contro! theory, which examines
in the Sec. II as a general formulation of optimal
control problems.

The applications to the formulation of the
minimum time-to-overtake problems then are
considered in Sec. III, where it is shown that the
useful method for formulation with dummy
control variable is applied to these problems. In
Sec. 1V, numerical results of the minimum time-
to-overtake problems are presented to illustrate
some of the features of optimal trajectories in the
situation that an aircraft pursues after an opponent
aircraft in front. Some conclusions then are
presented in Sec. V
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1. A General Formulation of
Optimal Control Problems

Statement of the problem
Consider the system of an aircraft
maneuverable in the 3-Dimensicnal space with the
equations of motion
X=D(x,u,xx) )

The basic problem can be stated as follows.
Minimize the functional

I=[nz(r, i) |+ [e(x )i ,)]

1 2
+f0 flxuxzyds @

with respect to the state x(z), the control u(z), and
the parameter x which satisfy the differential
constraints, i.e. the equations of motion (1)

x-P(xumxz)=0, O=<tsl 3
and the non-differential constraints
S(x,ung)=0

, O=st=l “@

with the boundary conditions

¥0) = given | (5)

[w(z,m)], =0 (6)
[v(xx)], =0 ¢

where x(z) is an n-dimensional state vector, u() is
an m-dimensional control vector and » is a p-
dimensional parameter vector. The state x(z) is
partitioned into vector y(tr) and zx), defined as
follows: y(r) is an a-vector that includes the
components of x(x) whose initial values are given,
and z(x) is a b-vector that includes the components
of x(z) that do not belong to y(x). Consequently,
initial conditions are given as follows:

{y<0)=[y,(r)]0(l=l,a) ®

Z0) : free
X" ={y@)".20)" } ®

In the above equations, I, f, g. h are scalar, the
functional @ is an n-vector, the function w is a c-

vector, the function 1 is a g-vector, and the
function S is a k-vector, k =m.

Derivation of the optimality conditions

From calculus of variation, it can be seen that
this problem is one of the Bolza type, and it can be
recast as that of minimizing the augmented
functional

J=(h+ on)0 +(g+ ;171/;)l
+f01[f+A.T(i—<I>)+pTS]dt
=(-ATx+h+0'w), (10)
+(Ax+grpy),
+f01[f—AT(I) +pTS—XTx]dt

subject to equations (3)-(7). Here, the n-vector
A(xr) is a time-variable Lagrange multiplier, k-
vector p(v) is a time-variable Lagrange multiplier,
c-vector o is a constant Lagrange multiplier, and
the g-vector p is a constant Lagrange multiplier.
The second form of equation (10) arises after the
customary integration by parts is performed.

In order to solve the stated problem, the
function x(z), u(x), = and the multipliers A (),
p(), o, p must satisfy the feasibility equations
(3)-(7) and the following optimality conditions:

A-forAT® —p™S =0 O0srsl (11)
fi-ATd, +p"S, =0, 0st<l (12)

(h, +o'o ), +(g, +n'y ),

+fnl[f”+/17¢n+p1S"]dt=O (13)
(- +h,+0'm ), =0 (19)
(AT+g +n"yp.),=0 (15)

where {(r) is a b-vector and the components of
A (x) associated with z(t).

In this formulation, a time normalization is used
in order to simplify the numerical calculation for
this problem. That is, the actual time ¢ is replaced
by the normalized time © = 7/ @ , which is defined
in such a way that the initial time is v= 0 and the
final time is T=1 . The actual final time 0, if it is
free, is regarded as a component of the vector
parameter = to be optimized. In this way, the
optimal control problem with variable final time is
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converted into an optimal control problem with
fixed final time. With this formulation, several
numerical algorithms, SCGRA, MQA, etc., were
developed by Miele et al®#, In this paper, SCGRA
and MQA are utilized to calculate numerical
optimal trajectories.

ITL. The application to the formulation of
minimum time-to-overtake problems

In this section, it is shown that the general
formulation of optimal ‘control problems
considered in Sec. Il can be applied to the
formulation of the minimum time-to-overtake
problems. The necessary conditions are partly
modified assuming a Meyer problem formulation.

Equations of motion

The equations of motion for the aircraft in the
3-Dimensional space are the following (see Fig. 1
and Fig. 2 for nomenclature)

X = Vcosy cosy (16)
y= Vcosysiny an
7= Vsiny (18)
mv = Tcosa~D~mgsiny (19

mVy =(Tsina+ L)coso-mgcosy 20)
mVi = {(Tsina+L)sino } [ cosy 2

where x denote dx/drs, for example. Aircraft
masses are assumed to be constant.

in above equations, aerodynamic forces can be
written with their aerodynamic coefficients as
follows:

1
L=5pV74yC,, C=Cppa @2

1
D= Epv’Aw C,, C,=C,+xC}  (23)

and atmospheric density can be described in an
exponential expression as follows:

p=p, exp(-cz) (24)

where it holds the unit in kilogram per cubic
meter.

Thrust

Lcos o

Velocity

> Horizontal

D
rag Point Mass

Weight
Fig. 1 Forces in the Flight ( SIDE VIEW)

Point Mass

. Reference
Direction

(Tsina + L) sinc Velocity

Fig. 2 Forces in the Flight ( TOP VIEW)

Constraints

In this problem, control variables are the angle
of attack «, the thrust 7, and the bank angle o.
These controls are usually constrained between
some upper and lower degree of limitation. That
is,

C.isC, alsa,, (25)
.l |

max ?

0<C,=C (26)

Tmax

which is provided by the performance and
aerodynamic characteristics of aircraft. There is,
in addition, an upper and lower limit on the
normal acceleration that can be expressed as

n min =N = ”m&x (27)

where n_,, is the maximum allowable normal

acceleration in g (maximum load factor) and n ,;,

is the minimum allowable normal acceleration in g
(minimum load factor). These limits are
determined by the structural limitation of aircraft
and/or the average physiological limitation of the

pilot. In fact, n_,, is often denoted by negative

sign. Besides, load factor n and angle of attack o
are connected with equality expression

_ pViA,CL a
2mg

n (28)

— 655 —



Now the components for the formulation
corresponding to the egs.(3)-(15) appeared all
together except for the performance index and
boundary conditions, one thing remains intact.
The inequality constraint eqs.(25)-(27) should be
converted into equality constraint for the
convenience of calculating the general formulation
of optimal control problems exactly. Then the
introduction of dummy control variables is
required for this purpose. With the use of the

dummy variables, u_,u,,and 4, , eqs.(25)-(27)
can be rewritten as follows:

a—-a  siny, =0, (—%s ", < —]2"——) 29

C, ——-C%"—(H sinu, )=0,

7
- S U, s

b3
) —) (30)

2

n.—n_. .
n- {222 +sinu, J+n_ \=0,
2 n min

b4 7
(——i—s u, 57) 31

The advantage of the use of dummy control
variables is that it need only the eq. (12) for
optimality condition of control variables to carry
out this formulation into calculations.

IV. Numerical Results of
the Minimum Time-To-Overtake Problems

To illustrate the characteristics of optimal
control problems with inequality constraints on
control variables in the previous two sections, here
we consider the prablem of finding the low-thrust
aircraft trajectories to overtake an opponent
aircraft performing some steady-state level turning
flight. In the following subscript r denotes the
slate guantities on the steady-state level turning
aircraft (evader) and subscript o denote the state
quantities on the pursuing aircraft (pursuer).

The performance index is expressed as

J—r,=f;/dt (32)

The initial and final conditions for evader are
all specified except for the final heading, which is
given by

X7, =97355 [m] V,, =04 [Mach ]
Yri = 197.35 ["1] Yri = 0 [deg] (33)
Z;, =5000 [m] wpy, =2292 [deg]

R= 2500 [m ], z, =5000 [m] (34)
Ry, =1000 [m] (35)
Xp, = Rsiny ., V;, © constant

Yrp= R(1~ cosy rr) Yrs= 0 (36)
2y =2, Yer=YPou

And the initial and final conditions of pursuer are
given by

Xo; =0 [m] Vo, =V, [ Mach |

You =0 [l?l] Yo: =0 [deg] 37
2y, = 5000 [m] w,, =0 [deg]

V, =04, 0.6, 0.8 [Mach ] 3%
Xo;=Xr, V(,f : free

Yoy =Yr; Yo; =0 (39
Loy =129 Vor=Vry,

Fig.3 shows the illustration of numerical
calculation model by means of Cartesian
coordinates.

2r= 5000 {m]
R =2500 [m]

Yp; =22.9183 [deg]
OT = 1000 [m]

Oxoir yoir 20) = (0,0, 5000) [m]
T y13 219 = (Rsingy, R{l-cosyy), 5000) [m]

Fig. 3 1lustration of Numerical Calculation Model
(TOP VIEW)

Other necessary constants are as follows:

Cpo = 0.0665 ¢=1.018x10""*
C,=40 k=0.1412 (40)
Crox=07  p,=1225 [kg/m®]

Tmax
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A, = 2788 [m’] m=10348 [kg]
N =100 M= —4.0 41)

g=9.8 (m/s’] a=340 [mls]

The numerical calculations are made in the
following combinations I, II, and Il in Table. 1,
which shows the initial velocity of evader and
pursuer in eq.(33) and (38), that make the
conditions easy to compare.

I 11 1|
Vanguard :V,, | Mach || 0.4 | 0.4 | 0.4
Pursuer :V, , [Mach | 104 [ 06! 03

Table. I: Comparison of the Type of Calculation
by the Initial Flight Velocity

The results of unspecified final state variables
and time are presented in Table. 2, and the results
at overtaking point when pursuer runs the same
trajectory after evader are presented in Table. 3.

i 1l i
Vo, Mach ]| 0.5635 | 0.6529 | 0.7844
¥, [deg | | 8487 | 5896 | 4541
7, [sec] [ 19876 [ 11563 | 72163

Table. 2: Results of Free State Variables and Time

1 11 |11
1y, | deg ] N/A | 68.75 | 45.84
t,|sec] | N/A | 14.706 | 7.3529

Table. 3: Case for Stead-State Turning Pursuer
(Pursuer runs the same trajectory
after evader with steady-state)

The numerical results of overall optimal
trajectories are shown in Fig. 5 through Fig. 11.
The resuiting optimal flight paths obviously dive
in the first half of the flight and then rise up in the
latter half in Fig. 6. This is the characteristic flight
path of the low speed yo-yo maneuver. Evidently,
the lesser the initial velocity of pursuer is, the
greater the rate of decent is. Moreover, the latter
half of the flight always looks like relatively
radical maneuver for pursuer, which can also be
understood in Fig. 7 and Fig. 10. Maneuver can be
explained by a trade-off between kinetic and
potential energy of aircraft. In general, pursuer is
going to compensate initial distance to the
opponent or time behind toward the evader with
the increase of his velocity somehow in the flight.
The reason for this rapid motion is that the
conversion of potential energy into kinetic energy
is quicker than thrust control to change the speed

of the aircraft. In order to convert potential energy
into kinetic energy, pursuer lowers the angle of
attack early in the flight. These consecutive
movements might also improve its acceleration
performance of aircraft in order to decrease the
drag. To increase the velocity to some extent in
the first half contributes to retrieving the initial
distance or time behind, and furthermore, aircraft
does not lose total energy much during the yo-yo
maneuver except at the end, when the angle of
attack is maximum to make the path angles meet
the final boundary condition (see Fig. 11) . The
lesser the initial velocity of pursuer is, the more
time to put on speed pursuer have. The trajectories
have also rather asymmetrical shape. That is
because thrust is taken into account to the
formulation. From Fig. 8, it can be seen that thrust
control takes maximum value all the way in the
optimal flight.

V. Conclusions

In this paper, minimum-time 3-Dimensional
turns to overtake an opponent aircraft flying in
steady-state level turning with constant velocity
and initial distance are numerically analyzed. The
results of the optimal maneuver form a sequence
of low speed yo-yo maneuver trajectories, which
can be clearly understood the effectiveness of this
maneuver throughout the behavior of some state
and control variables. Also, the effectiveness is
manifested by -the relatively low initial velocity
aircraft. When the initial velocity is high, it may
result in the high speed yo-yo maneuver.

References

LBryson, A.E. and Ho, W.C., Applied Optimal
Control, Ginn- Blaisdell, Waltham, Mass., 1969.

Wu, A.K,, et al., Optimal Control Applications
& Methods, 1-1, pp.69-88, 1980

»Miele, A., et al., Journal of Optimization
Theory and Applications, 14-5, 529-556, 1974

“Gonzalez, S., et al. , Journal of Optimization
Theory & Applications, 50, pp.109-128, 1986

— 657 —



— - 1 Evader Flight Path ( V= 0.4 [Mach] )
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