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Abstract

In this paper we deal with a synthesis of
flight control system via nonlinear model matching
theory.

First, the longitudinal and lateral-directio-
nal equations of aircraft motion on CCV mode are
considered, except the assumption "variations on
steady straight flight due to disturbances are
very small”. Nexl, a design method of the dynamic
nodel matching control system based on Hirschorn's
Algorithm4’5’ is proposed to the above nonlinear
system.

Finally, the proposed control system is
applied to the small sized, high speed aircraft,
T-2 on CCVY’ mode and numerical simulations are
shown to justify the proposed schenme.

1. Introduction

In this paper, we propose a design of flight
control system via a Nonlinear Model Matching
Theory. Generally, model following control
approach is very useful on designing flight
control system satisfying the critical control
requirements, in which airplanes can fly over a
wide range and at high speed, etc.. However, it
scems that the fighters like F-16 with TVC, which
is developed in U.S.A. presently, require to fly
al a range of more high angle of attack. Such a
system becomes nonlinear longitudinal and lateral-
directional equation of motion, so the existing
model following control system can not be applied
to such a case directly.

In this study, first, the longitudinal and
lateral-directional equations of aircraft motion
on CCY mode are considered. When if it is not
assumed that variations on steady straight flight
due to disturbances are very small, the longitudi-
nal and lateral-directional equations of motion
become coupled nonlinear equations of motion. And
vwe consider that elevator angle, flap-aileron
angle, aileron angle, rudder angle and vertical
canard angle are used as inputs, also vertical
velocity, pitch angle, side-slip angle, bank angle
and yaw angle are measured as outputs. Second, a
disign method of the dynamic model matching
contrel system based on llirschorn’s Algorithm
extended with Silverman’s Structure Algorithm6'7’ 8>
is proposed to the above nonlinear system. Then,
the conditions, to produce control input without
mode]l matching and differential values of signals
are shown, also it is shown that this result is
the extention of linear model following control
system. Third, we attempt to design of CCV Flight
Control System via Nonlinear Model Matching Theory
and the proposed control system is applied to the
small sized, high speed aircraft, T-2 on CCV mode.
At the end of paper, numerical simulations are
shown Lo investigate the feasibility of the
proposed approach. '

* TVC = Thrust Vector Control

* CCV = Control Configured Vehicle

2. Equations of Aircraft Motion (CCV mode)
In this paragraph, the equations of aircraft
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motion to achieve the CCV mode are described.
¥here, the longitudinal and lateral directional
equations of aircraft motion are obtained except
Lthe assumplion!’> "variations on steady straight
flight due to disturbances are very small”, that
is, the angle of attack, the pitch angle and bank
angle are very small. And the flap-aileron and the
vertical canarad are included as the new control
surfaces. )

Then, considering T-2CCV as the conlrolled
system, the longitudinal equations of aircraft
motion on CCV mode become as {ollows.

(s = ¥ult) - Xew(t) + g-sinl 8 (1))

= Xagd‘e(t)+ X6(6;(t)

“Zaut) + (s - Zuw)w(t) + Uogq(l)
= Zd.eé‘e(t) + Zd.‘(yf(t)
s8 (t)
= q(W)-cos[g ()] - r (O sinl ¢ (V)]

SHau(t)-(Mes + Ho)w(t) + (s - Mda(t)
=l de(t) Mg (L)
e f

And the lateral-directional egquations of aircraft
motion become as follows.

(s - Y1) A(L) + r(D)

~ (g/Uo)-cos| 6 (1)} sinl ¢ (1)]

:Y366“(D +Y316,(0 +Y3v:6v4t)
s¢ (1) = p(L)
L' Bt + (s - Lop(t) - Lir(t)

= lllsa(sa(t) + L’5r6 r(t) + L"svcd vc(t)
'Nb B - Np(t) + (s ~N)r(t)

= N'aad‘a(t) + N5 r(5,(t) + N'dvcavc(t)
sw ()= r(t)

where
u(t) : forward velocity (m/sec)
w(l) : vertical velocity (m/sec)
6 (1) : pitch angle (rad)
q(L) : pitch rate (rad/sec)

B(t) : side-slip angle (rad)
¢ (t) : bank angle (rad)

p(t) 1 roll rate (rad/sec)
r(t) : yaw rate (rad/sec)

w (t) : yaw angle (rad)

5 () ¢
J (b)) :

elevator angle (rad)
flap-airelon angle (rad)

Jd a(t) : airelon angle (rad)

d (1) : rudder angle (rad)

J ve(t): vertical canard angle (rad)

g : gravity acceleration (9.8m/sec?)
Uo : air speed (m/sec)

Xuy 2w, Md‘,' etc.

: stability and control derivatives
Now, setting the next state vector and input,

(DT = fule) w(t) 6 (L) a(t) B(L) (D
¢ (1) p(1) r(1) » (1))
Uf(t)T = [d e(t—) af(t) ‘Sa(t) dr(t) 6vc(t)]

Using above x(1) and u(t), the above equations of
aircraft motion can be described as the following
state vector nonlinear equation (SystemZ).
(SystemX)

x(t) = F(x(t)) + Bur(t) ¢))

where
F(x(t)) = [£1(t),f2(t), » o, To()]

fi(t) = Xou(t) + Xew(t) - g:sinf{o (1) ]
f2(t) = Zau(t) + Zuw(t) + Uoa(t)

fa(t) = q(t) coslg ()] - r(t)-sinl¢ (t)]
fa(t) = (Mu*M;Zu)U(t) + (Mw+M;Zw)W(t)

+ (HarohDa(D)
fs(t) = Y’/j B(t)

+ (8/Uo)cosl@ (1) }-sin[ ¢ ()] - r(t)
fe(t) = p(t)
f7(t) =th B(t) + Lop(t) + Lir(t)

fa(t) = N‘ﬁﬁ(t) + NLp(L) + Nir(t)
fo(t) = r(t)

= T .
B = [b7,b], -, b]]7

by = [ Xcs.e XJ . 0 0 0 ]
by = | ZaE de 0 0 0 ]
ba=1[ 0 0 0 0 0 ]

bs = [M_ +M:Z MeZ M 9 0 0 )
e Y de "It J

bs = | 0 0 Y:SQYB.YYZFVCI
be = [ 0 0 0 0 0 }
b= 0 0 LdaLerJVC]
bg=1[ 0 0 Nba Nb, Nbvc]
be =1 0 0 0 0 0 }

Then, F(x(t)) is the real function about the state
and is analytical at the adequate open domain
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within R", £€R". And the inilial value; o€ &

Considering CCYV mode, the output is set as
follows.

y(t) = Cx(t) %)
where

y(DT = [w(t) 6(t) B(1) #(t) »(t)]

Then, the matrix C becomes

0 1L 000 00 00
O 0 109000 0 O
C=1{0 00010000
00 006 0 1 0 00

9 1 00 0 0 0 0 1

3. Sysnthsis of the Flight Control System
via Model Matching Theory

In this paragraph, the dynamic model matching
control system based on Hirschorn’s Algorithm
extended with Silverman's Structure Algolithm is
producted to the nonlinear system in the second
paragraph. Then, the conditions, to produce
control input without model matching and differen-
tial value of signals are shown, also it is shown
that this result is the extention of linear model
following control system.

3. 1 Formulation of the Problen
Considering the next 2nd order system as the
reference model (SystemZun) which is set by the
designer adequately.
(SystemZ )

iMl(t) = Auxui (t) + Buumi (L)

Y (L) = Cuxwr (1) (i=1,2,--,5) (1)

where xm1 (L) €RZ, umi(t)ER', yu (L) ER' and they
are assigned respectively as follows.

yu()=lymi (L) yua(t) -+ yus(t)]
() ={xu1 (1) xu2(t) - xus(t)]
U(t)={ums (t) umz (L)« cums(t)]
0 1

~w? 2w
Bur = [0 117

Cuy = [0)3 0}

Aui =

where & is the damping ratio and w, is the
undamped natural frequency (rad/sec).

The objective here is to construct the model
matching control system which forces the output of
the nonlinear equation of aircraft motion, y(t),

to truck the reference model output, yu(t),
aymptotically.
Where, the condition of the model matching

considered here is defined as follows.

(Definition)
For the following conditions

F(x0) = 0, Amxuo = 0, C(Xo) = CuXwo,
when

yu(t) - y(t) = 0

is achieved, the system X can be model-matched to
the model system X u.
Where Aw and Cy are given by

Aw = diag(AMI) Cu = diag(me)

3. 2
Considering the next procedures to the system

Construction of the Control System

Z with Hirschorn’s Algorithm5’,

(Step 1)

Considering the time differential of the
output, y; (1), left-multiplying y.:(t) by (s+go),
the next equation is obtained

(5)
(5+g0)y1(t) = [C1F(x(t))+8oCyx(t) ]+CyBu,(t)

where, go > 0, s = d/dt.
Next, formally replacing the Eq.(5) with the
next equation

(5+80) 11y 1 (1) = Cays(x) + Daga(Oue(t)  (6)

In the above equation, when if Dajy;(x)#0,
replacing the subindexes 11" of f, Ca and Da with
”1”. And going to the next step.

When if Daj1(x)=0, with differentiating again,
the next equation is obtained

(5+80) 11y 1 (1) = Cars(X) + Dag (OU(L) (1)

Where Day1(x)#0. Then, replacing the subindex

”1i” of the above equation with 1" and going to
the next step. Where fi, is an integer, y,(t) and
C, -are the i-th element and the i-th colunmn

respectively.

(Step 11)
Doing the same procedures at Step 1 to yo(t),
the next equation is obtained

(5+80) "2'y2(1) = Cazi(X) + Dazi(X)ue(t)  (8)

(Step )
When if Daz2i(x) # a2:00)DBa1(x) ; [a2:(x)#0],
replacing the subindex 21" with 72", doing the
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same procedures since Step Il .to the output, ys(t).
When if Da21(x) = a21(x)Day(x), doing the
same procedures since Step 1l to the new output

1 f
—o21(x)(s+go) 'y1(t) + (stge) 2'ya(l)
Repeating the above procedures to the output
ys(t), the next equation is obtained

Nals,x)y(t) = Calx) + Da(X)us(t) (9)

where Na(s,x) is the lower triangler matrix which
the diagonal elements are (s+go)f’. and Ca(x) and
D.(x) are respectively

Ca(x)
Da(x)

[Cas(x) Caa(x) -
[Das(x) Daz(x) <+

"

Cas(x)]T
Das(x) 17

Using the above relation, the next theorem is
obtained.

< Theoren >

If the next conditions are satisfied, the
system Z can be matched to the reference model
system Z wm.

(i) rank(Da.(x)) = 5 for x(t)ER

(i1) Dua{x,xm) and Cma(x,xm) which satisfy the
next equation exist

Na(s,X)¥u(t) = CualxX,Xm) + Dua(x,Xmdum(t) (10)

Then, the model matching can be achieved by the
following control law

an
ueCt) = 02 (O [-Ca(x)+Cualx,Xu) + DualX, Xudum(t) ]
(Certification)
The condition (i) and the control law, Eq.(11),

can be realized. And defining the output error,
e(t), as follows

e(t) = yw(t) - y(t) (12)
The next equation is obtained with Eqs.(9)~(11)
Na(s,x)e(t) = 0 (13)

liere taking notice of the construction of Na.(s,x),
for the following case,

x(0) = 0, xu(0) = 0
the relation
y() = yu(L) tz 90 (14)

is obtained. And the model matching can be
achieved.

(Annotation)
This proposed method can be applied Lo the
system,
= Ax) + SuiB(x)
(SystenII) ,:1‘ !

y = C(x) + D(x)u

¥here, x€R"™, u€ER™, y€ER® are the state, input
and output vectors.

And A(x)€R™, By€R"*}, C(x)ERP*", D(x)ER"*™
are the real function vectors and matrices about
the state, and are analytical (sufficient-continu-
ously differentialble) at the adequate open domain
within R™, RER".

Mareover, to Xo€ KX and the piecewise-continu-

”

ous input "u”, the above system has the single
solution within 4.
Then, the next model system is given as the
adequate model sytem to be matched
m
X Am(xn) + ZumiBwmi(x)
(SystemIln) o e 121

yu = Cu(xu)

Where ym€R® and the system Ilu, as same as the
system II, whose Ay(xwm),Bu(xw),Cu(xy) are analyti-
cal within # and has the single solution to piece-
wise-continuous input “um”.

4. Application to the CCY Flight Control Systea

In this paragraph, we attempt to apply the
proposed control sytem to the flight control
system on CCV mode of the small sized and high
speed aircraft, T-2CCV, and investigate the feasi-
bility of the proposed approach. First, the prac-
tical derivatives are applied to the longitudinal
and lateral equations of aircraft motion on CCV
mode at Chap.2. Next, the systhesis of a CCV
flight control system via nonlinear model matching
thory described at Chap.3 are shown.

Now, using the derivatives on the flight
condition which T-2CCV flies at the altitude 6000
(m) and the velocity M = 0.8, f;(t) and b,
incluled in Eq.(1) becomes as follows

f1(t) = -0.0084u(t) + 0.0385w(t) ~ 9.8sin{ @ (1))

f2(t) = -0.077u(t) - 0.882w(t) + 254.4q(t)

fa(t) = q(t)-cos{¢ (V)] - r(t) sin{¢ (V)]

f4(t) = 0.0001u(t) - 0.008w(t) - 1.217q(t)

f5(t) = -0.2588(t) + 0.039cos[6 (1)} sinl ¢ (1)]
-r{t)

fe(t) = p(t)

f2(t) = -65.058(t) - 3.p(t) + 2.04r(t)

— 662 —



fa(t) = 7.888(t) - 0.06p(t) - 0.47r(t)

fo(t) = r(t) (15)
by=1 0 0 0 0 0 ]
by = [-14.446 -18.408 0 0 0 ]
bs=[ O 0 0 0 0 ]
be = [-22.062 -2.343 0 0 0 ]
bs= [ 0 0 -0.008  0.121 0.081 ]
be = [ 0 0 0 0 0 ]
br= [ 0 0 151.0 46.20 7.106 |
be={ 0 0 3.654 ° -15.94  6.206 ]
bo= [ 0 0 o0 0 ]

Next, differentiating the output, Eq.(3), based on
the proposed method of Chap.3, the next equation
is obtained

NA(S)Y(t) = Ca(x) + Da(x)uf(t) (16)

where

Na(s) = diag[(s+go),(st80)2,(5*g0),

(s+zo)2.(s+50)’]
Calx)T = [Cay(t),Ca2(t), +,Cas(t)]
Ca1(t) = gow(t) + fo(t)
Ca2(t) = 816 (L) + gof3(t) + fq0(L)

fio(t) = fa(t)cos[¢ ()] + a(t)p(t)sin[ ¢ (1)]

-fe(t)sin[ @ (1)] + r(t)p(t)cos{ ¢ (1))

Cas(t) = goB (1) + f5(t)

Cas(t) = g1 B (L) + g2p(1) + f4(1)

Cas(t) = g1w (1) + g2r(t) + fq(t)
€1 = Bo'Bo, B2 = 2'Bo

Da(x)T = [Dul(t) Da2(t) - Das(t)]

Da1(x)T = [18.409 14.446 6 0 0]
Daz(x)T = [Daz21(t) Dazz(t) 0 0 0]
Da2:(t) = 22.062cos[ ¢ (t)]

Da22(t) = 2.343[ 4 (1)] + 3.654sin[¢ (t)]
Das(t)™ = [0 0 -0.008 0.121 0.081]
Daa(t)T = (0 0 151.0 46.20 7.106]
Das(t)T = [0 0 3.654 -15.94 6.206]

Here multiplying element Na(s,x) is independent to
the variable x.

Also, Da(x) is
rank Da(x) =5 (#(t)#£79.5) (an

And with the square matrix, Da(x), producing the
control input, us(t), to the model matching, as
follows

uet) = Da ' (X) [-Calx) + Na(s)yw(t)] (18)

Then, the each CCY mode can be achieved with
the adequate reference input.

(Stability)
The left invertible system of "N.(s)y(t) =
Ca(x) + Da(x)ue(t)”, that is, if

(L) = FCR(D) + BGR(E (L)
CCRORCL)
0= Xo €ER

P ety
- ~
r
A
1}

is stable, then, the entire system is stable.
Where

F(R) = F(i) - B Da(i)-1Ca(i)
B(X) = B Da(®)-1!
C(R) = -Da(R)~1Cal)

And using the control input, Eq.(18), the
entire system becomes as follows

x(t) ] [FOO + BOOCmaxu() | [B0)0xa

d/dt = + um(t)
xu(t) Anxu(t) B
y(t) = Cx(t)

(Annotation)

The above description means the equivalence to
the strongly detectability at the linear system
(including the time-variable system). And it means
a minimum phase system.

Simulation(A ~ mode and Ay mode?!’)

To achieve the CCV Direct Lift(Ay) mode and
Direct Sideforce(Ay) mode, setting the parameters
of the reference model and go as follows

8o :.5
C‘

0.7, wn = 5.2 (rad/sec)

T
Um

[0+£0.0174 0 0+£0.0174]

And the simulation results are shown in Fig.1 and
Fig.2.

(Evaluation)

The results show that the direct 1ift mode
which forces the vertical flight path angle to *1
(deg) with the constant angle of attack (0 deg)
and the direct side-force mode which forces the
lateral-directional flight path angle to *1 (deg)
with the constant bank angle and side-slip angle
(0 deg) are achieved.
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Fig.1 The response of the input-output
on Direct Lift (An) mode

4. Conclusion
¥e propose a synthesis of flight control
system via nonlinear model matching theory based
on lirschern’s Algorithm extended with Silverman’s
Structure Algorithm. The proposed control system
is applied to the small sized and high speed air-
craft, T-2CCV, and we show the feasibility of the

proposed approach with numerical simulations.
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