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ABSTRACT

Some extended results in the study of two-position align-

ment for strapdown inertial navigation system are presented.

In [1], an observability analysis for two-position alignment
was done by analytic rank test of the stripped observabil-
ity matrix and numerical calenlation of the errar covariance
propagation using ten-state error model. Tn this paper, it is
done by an analytic approach which utilizes the nonsingular
condition of the determinant of simplified stripped observ-
ability matrix and by numerical calculation of the error co-
variance propagation accomplished in more cases than [1],
and the twelve-state error model including vertical chan-
nel is used instead of ten-state error model. In addition, it
is confirmed that this approach more clearly produces the
same result as shown in the original work in terms of con-
plete observability and there exist some hetter two-position

configurations than [1] using the twelve-state error model.

I. INTRODUCTION

The initial alignment of strapdown inertial navigalion
systein(SDINS) is an important process to determine the
angular relationship between the navigation frame and the
body frame before navigation starts. Stationary gyrocdm-
passing is commonly used as a sell-alignment method which
utilizes its own instruments withoul the use of external
equipment. Due to its linportance, many researchers have
studied the topic[1-6). Recently, several papers which inves-
tigates system characteristics through an observability anal-
ysis were presented. Especially. multiposition alignment is

proposed in [1] to improve the performance of stalionary

alignment of SDINS. The hasic idea of the multiposition
alignment is to improve the ohservability of SDINS system
by changing the sensor position. Twa-position alignment
concentrated in this paper is |)v|‘ﬁ»rn|(*(l by rotating the in-
ertial measurement unit or equivalently by rotating vehi-
cle body with respect to a single axis. T'he two-posilion
alignment problem can be divided into two categories. One
is the rotation with respect to which axis makes the sys-
tem completely observable. The other is how much degrees
of the relative angle between two positions minimizes the
alignment errors for a given confliguration. This problem
was resolved in [1] by analytic rank test of the stripped ob-
servability matrix(SOM)[7] and numerical calculation of the
error covariance propagation.

In this paper, Lo substitute rank test, we introduce the
determinant of the SOM as a measure to determine the
complete observability of piece-wise constant system and
show that it produces an analytic solution. The advantage
of this approach is that we can casily determine the singular
case of SOM which means the system is not completely
observable and this approach can present the relation of
attitude angles in two-position alignment which make the
system not completely observable.

In the next section we describe SDINS error model for
the stationary alignment. In section Hl, we introduce an an-
alytic approach to observability analysis using the determi-
nant of simplified stripped observability matrix of piece-wise
constant system. In section IV, we present the optimal two-
position alignment using the numierical caleulation of error
covariance propagation. TFinally, some conclusions will be

given.

— 665 —



Ii. SDINS ERROR MODEL

An SDINS error madel has a structural difference com-
pared to the gimballed INS error model, that is, it con-
tains the coordinate transformation matrix from the body
frame to the navigation frame. For the purpose of station-
ary two-position alignment, we have extended the Lee, et
al’s SDINS error model[] by adding the vertical channel
error model. A local lovel NED{North-East-Down) frame
is used as the navigation frame, and the alignment posi-
Llion is assuted to be precisely known so that the position
error model may be omitled. The accelerometer and gyro
errors are modeled as random biases. Then the SDINS sta-
tionary error model augmented with sensor errors can be

represented by

(1) FoiooT z (1)
(1) Osxe  Oaxe (1)
= A(t) @))]

where Ogyg is zero matrix of indicated dimension and the
state vectors, z ¢ and z, consist of
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where v and ¥ are the velocity and allitude error, respec-
tively; V is the accelerometer crvor; ¢ is the gyro error; the
subscripts z,y, and z denote the body axes. And system

dynamic matrix F' is represented by
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where ¢ is the gravitational force; € represents the earth
rate; Lhe subscripts N, E,and I denote the north, east, and
down components, respectively. The mafrix 75 is defined as

follows.
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whete CJ = {Cij}i,j=1,2,3 is the coordinate transformation
malrix from the body frame b to navigation frame n, Pro-
vided that the transformation matrix has roll{$)-pitch(#)-

yaw(47) Euler convention, it can be represented by

el cpafsp — spcd  csBeod + apsg

C; = syl spsfsd +ced  asfed — cPag (5)
—sf cBad clcd
where ¢tp = cosy, ¢f = cosf, cp = cosé, s = sing,

s = sin 6, 8¢ = sin ¢.

The matrix T; varies due to the change of the trans-
formation matrix, thus SDINS system becomes the time
varying system depending on the Euler angles. Since the
constant attitude change can be provided arbitrarily, the
time varying system can be considered as a picce-wise con-
stant systemn, ealled a segment. The measured signals dur-
ing the stationary alignment are the velocity errors. Ience

the observation model can he written as follows.

zy(l) (1)
z2(t) = [lsxs Oaxs Oaxa Osxa + | na(t) ©)
za(l) na(t)

= Hz(t)+n(),n{t) ~ N(O. B)

where the measurcment matrix Il is always constant

regardless of veliicle attitude change.

1If. OBSERVABILITY ANALYSIS

Observability analysis of a dynamic system represents
the efliciency of an estimatar designed Lo estimate the states
of the system. Tor the sake of observability analysis of a
piece-wise constant system, we must check not only com-
plete observability but also the degree of observability of
the system. It is because the degree of observability of
piece-wise constant system can vary according to the con-
figuration of segments, and the complele observableness by
the rank test may not provide enough information when

implementing an estimator{8]. Tn (his section, we prove the
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rank of SOM is equal to that of Total Qbservability Ma-
triz( TOM), aud derive the determinant of SOM in order to
determine the complete observability. At first, consider a

continuons piece-wise constant.system as fotlows,

i)
Zg(t)

lil"T([)V i=],2,"-,7'

Ha(t) (7)

]

where r is the number of segments. And deline a measure-

went vector Z; as [ollows.
Zi{t) = Via(t), i=1,2,--4r (8)

where Z;(t) consists of Lhe vector () and its n — 1 deriva-
tives, and V; is represented by

. a7
Ve [T, (FAT - (A7) (9)

Then we can construct a measurement vector Z(t) of the

picce-wise constant system as follows.
Z{) = V(1) (10)

whete Z(t) is the vector of all vectors Z;(1), i = 1,2,---.r,
and V is the TOM represenied hy

W

Vzc"’A'

V= VaCAzA)r/‘]L\| (1)

‘/re/‘r—lAr—l e

where A; is the time interval of segment i Aund Vg is the

SOM represented by

Vs=| Vs (12)

Using the nonsingular condition of (11), we can deter-
mine the complete observability. However, it is diflicult to
calculate analytically hecause (11) contains the transition
matrices for segments. Thus we suggest the following theo-

rem related to a simpler transformation.

TureoreM 1. The SDINS error model defined in (1) and
(6) salisfies Vo = ' V

where E is an elementary row operation matrix.

PRrooF : See the Appendix.

Complete observahility of two-position alignment is de-
termined by the nonsingular condition of the determinant
of observability matrix, then theorein 1 tells that we can
use the simpler form of the SOM VY instead of the TOM
V.

IV. OPTIMAL TWO-POSITION

When stationary fixed-position atignment is performed,
the rank of the observability matvix obtained from the SDINS
model (1) and (6) is 9, thal is. the system is not completely
observable. But the systemn could be completely observable
by changing the coordinate transformation matrix withoul
the use of additional measnrements of the other states. The
change of the transformation matrix can be provided by
changing the attitude of the vehicle or equivalently by ro-
tating the inertial measurement wnil. After the alignment
in an initial position, the successive aligniment continned
in the second position obtained by rotating SDINS with
respect to one axis from the initial position once. Using
the two-position alignment, it is possible to estimate all the
state variables because the system hecomes completely ob-
servable. Furthermore, since the SDINS error model used
in fixed position alignment is not completely observable,
the error variances of unohservable state variables remain
constant or decrease very slowly. On the other hand, two-
position alignment causes the system to be completely ob-
servable and results in a fast decrease of error variance as
shown in [1]. In order to determine the complete observ-
ability, consider the SOM for two-position alignment as fol-

lows.
Vs = . (13)

By elementary row operation, a simplificd SOM can be ob-

tained from (13) as follows.

Iz O3x3 O3x3  Oyxs

O3xz  Fiz Cp(1) Oaxs
Vs= 1| Oaxs Fa2 Oaxs CP1) C(14)

O3xz Fiz CP(2) O3x3

Oaxz Faz  O3xa  C7(2)
where I and 0 are identity and zero matrices of indicated
dimensions, and CJ(1) and C3(2) are the coordinate trans-
forimation matrices in the first and second position respec-
tively. If we assume that C7{1) and C7{2) are orthogonal,

then after a lot of manipulations we obtain the determinant
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value of ¥ Vg as lollows.

J = de(VIV%)
= 82— Sa )[Ryt (2~ Sn)+ QX007 (2 - Sn)
=208 Qpg?Sia + QN g*(2 ~ Saa)] (15)

+8(2 — S2)[-Qhy' ST, - Q40,47 ST,
+’lﬂ\}\vﬂny7 S12822 — Qf\-y?ﬁf;.]

where
Sip = CRONCH)T + Crecran’. (16)

Using (15}, (16) and (5}, we obtain the following then-

rem.

Tueorem 2. Given the pair (A, 1) of (1) and (6) where
Qn is nonzero, let J(oy,m2) be the posilive value oblained
by two-position in (15) and (16). Here cq and oz denote
Euler angles for the first and sccond position, respectively.
Then the nonsingular condilions of J for one azis rolalion

become,
(1) J(¥i,2) #0
(2) J(01,02) = [)
(3) J(d1,¢2) #0

Jor g # 2nm + ¢y (17a)
Jor all 8y, 8, (7h)
Jor o £ 22w+ ¢y (17¢)

where ¢,8 and ¢ denote roll, pilch and heading angles, re-

spectively.

Proor : See the Appendix.

In theorem 2, the nounsingular conditions of (17a) and
(17¢) are equal to full rauk conditions of observability ma-
trix, that is, it implics complete observability of the sys-
tem. Thus it shows that the change of the heading or
roll angle always results in a completely observable system,
while the change of the pitch angle canses rank deficiency.
This result shows that the two-position alignment nsing the
twelve-state SDINS crror model with the vertical channel
error model improves the observability of the two-position
alignment obtained by roll axis rotation. compared to the
complete observability condilion using the len-state SDINS
error model of {1].

Now, to evaluate the degree of observablify of two po-
sition alignment according to the change of each rotation
angle, error covariance of kabman filter is needed. For the
system described in (1} and (6), the error covariance ma-
trix £ is obtained by calenlating the discrete Riccati matrix

equation as follows{1].

PoYERY = (OT (k= DYk = D&k = 1)+ Q)

+HTR-T k=1,2,...,n (1R)

In this paper, P;(0), Q, and R are assumed as

Pi0) = diag{(0.11/s)2,(0.1f1/)2,(0.1f1])2,(1°)2,
(1992, (192, (100192, (100119)?,
(100719)2.(0.02°/1)2,
(0.02°/1)2,(0.020/11)%}
Q = ding{(5pg) (5ug)®, (yeg). (0.01° /Y2,
{0.01°/1)2,(0.01°/1)2.0,0,0,0,0,0)
R = diag{(0.0111/sY2,(0.011/5)2,(0.01/1]2)2).

And the number of iteration performed for calcurating P;
is 600 which is equivalent to 60O scconds in lime-scale, At
300 seconds, rotation happens.

Fig. 1. a and fig. L. b represent 1 values of ¢y and
$p according to inilial pitch angle change when the two-
position alignment is accomplished by rotating 180 degrees
with respect to rofl axis. They show that when initial pitch
angle is not 0 degree, the twelve-state error model gives
better degree of observability of piteh angle error compared
with the ten-state error model, and whew initial pitch angle
is in small range, the degree of ohservability of heading angle
does not vary much about two models. Fig. 2. a and [ig.
2. b compare roll axis rotalion with heading axis rotation.
They verily that the roll axis rotation excluding the case
that initial pitch angle is near 0 degree slightly improves
the degree of observability of the two-position alignment
than the heading axis rotation.

Fig. 3. a and fig. 3. b show the lo values of ¥p in
case of two position alignment oblained by the heading axis
rotation according to the change of the initial roll and pitch
angle respectively. They show that the optimal rotation an-
gle with respect to the heading axis is 180 degrees regardless
of the initial roll or pitch angle change. Fig. 4. a and fig. 4.
b represent the lo values of ¢p according to the rotation
angle with respect to Lhe roll axis and the initial pitch and
heading angle. fig. 4. a shows thal in case that the initial
heading angle is 0 degree and the initial pitch angle is not
0 degree, the optimal rotation angle with respect to the roll
axis is 180 degrees. Fig. 5. a and fig. 5. b show the 1o
vaiues of 1'p according to the rotation angle with respect
to the pitch axis and the initial heading angle respectively.
Tig. 5. a verifies that the change of only pitch angle has
no effect on error estimation. Also, fig. 4. b and fig. 5. b
show that the eflect of roll and pitch axis rotation may be

reversed according to the initial heading angle.
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Consequently, we can conchide that the optimal two-
position which satisfies complete observability and mini-
mizes alignment errors can be obtained by rotating SDINS
by 180 degrees with respect to the roll axis when initial
pitch angle in SDINS is in small range but zero degree, But
from fig. 3. a and fig. 4. a, the rotation with respect to
roll axis is more sensitive near 180 degrees than the rota-
tion with respect to heading axis. Therefore, we can sce
the rotation with respect Lo heading axis is more stable and
easier to implement than the rotation with respect to voll

axis.

V. SUMMARY AND CONCLUSIONS

An optimal two-position alignment for improving the
performance of stationary alignment, of SDINS has been in-
vestigated by an analylic and wumerical approach, Its per-
formance has been examined by analytic observability anal-
ysis using the nounsingular condition of the determinant of
the simplified stripped observability matrix and numerical
calculation of error covariance propagation. From the non-
singular condition, it is shown that the {wo-position align-
ment obtained by rotating SDINS with respect to the roll
and heading axis can always make the system completely
observable, while the rotation with respect to the pitch axis
result in a rank deficiency of observability matrix. And from
the numerical calculation ol error covarinnce propagation, it
is shown that the twelve-state error model produces better
performance than the ten-state error model, and the rota-
tion of 180 degrees willl respect to the roll axis produces
better performance than the rolation with respect to the
heading axis in case that there exists small pitch angle in
initial condition. But il initial pitch aungle is zero degree,
the rotation with respect to heading axis is more stable and
easier to implement than roll axis.

Above results show that the observability analysis using
the nonsingular condition of the determinant of the sim-
plified stripped observability matrix is very eflicient and
casy to determine the complete ohservability of continu-
onts picce-wise constant system, and the twelve-state error
model presents optimal rotation angle in more cases then
the ten-state error model. And they can be applicd to de-

sign a picce-wise constant system such as SDINS.

APPENDIX
To prove theoram 1, two lemmas are introduced and
proved.

LEMMA L. For erbilrary integer k1 and the system dynam-

ics matriz A defined in (1) salisfies
AfAL =AY Jorvi<iggr -, (AD)

PROOF OF LEMMA 1 : Deline M* such as

FEoio0
M= ... ... ... (A2)
0 0
which satisfies
M*A; = AMF1 ) and A, M* = MR (A3)

Then, the followings are satisfied.

AFAL = MEIA M
Fo3OT Fi-r o0
= MY ..ol Ll cee e e | 4
0 0 0 0
= MFIMIA; (A1)
IukJrl—lAj = Af-H
LEMMA 2.

H[HZA]U] Jor¥1<j<r—1 (A5)
can be represenicd by I and the lincar combination of finite
series of Ay, Ar_q.

PROOF OF LEMMA 2 : [or arbitrary j.

0 AF oo AF
[1+ r Aj—L.L] [l+ ) ,IJ‘-'_,T!L]
k=1 k=1
& Ak Ak {AG)
=1+ Z/l w+ X /—l7+
=1 k=1
00 A" 00 Ak
/‘ - —J,"
L

By the result of Lemma |,
sl Ak > 0
> Ao Z/I‘_, u' =3 Ak Sk (A7)
k=1 !

k=2

where f(k) denotes a constant coefficient.

Substitute (A9) into (AR), (AR) hecomes

1+ZA§-I~T+Z,1]~,1,(/. (AR)
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where g(k) denotes a constant cocflicient.

Hence, (A7) can be represented as
oo o0
[+ Afag+ -+ Y Mg (A9)
k=1 k=1

where a;e(z = 1,-++,7) denote a constant coeflicient. Aud
by virtue of the Caley-Hamilton theorem, (A9) can he rep-
resented as

r—1

r—-1
143 Afal 45 Ad, (A10)
k=1 k=1

where al (i = 1,- -+, 7) denote a constant coeflicient. Tlense,

lemma 2 can be proved.

Proor or THEOREM 1 : In the TONM of (11), the transition
matrix of segiment i can be represented by

> Ak
eMibi 1+L,\§T;_ (A11)
k=1 v

where I and 0 are twelfth order identity and sixth order
zero matrices respectively; A; is Lhe constant matrix; 4, is
the time interval of segment #; " and 7T is given by (1).
we note that T} varies duce to vehicle attitnde change bat F
is invariant regardless of the segment change. Inserting (9)

and (A11) into (11) yiclds as follows.

[T n ) ]
A,
HA?

HAPY |

H
A,

o *
HA [1 +3 ,1:-%]

V= : (A12)

HAR™ ]

HA,

o . o
HA? [sz."f"%] [l+k‘2f\‘.‘%f]
. = =1}

{ ILAP=

Lemma 1 and lemma 2 show that we can find nonsingu-
lar matrix F such that Vs = F V" where EF denotes elemen-

tary row operation matrix. This completes the prool.

Proor of TurorEM 2: In (15), we obtain (Syz2 — 2) term

as follows.

S22 —2 = 2(cOichrsthysyy —1)
+2(cdr 981 s — i 91 ) (cPasbasty — cbaspa) (A13)
42(3p1 30y s¢y + ePrediaganlz v + cyaedy)
In case of the two-position alignment obtained by the head-
ing axis rotation, that is, when ¢y = ¢ = 0, and 6, = 6, =
0 are satisfied, we obtain the simplified equation of (A13)

as follows.

S22 —2

2 sipy sthy 4 ednety — 1)
2(c(iby = ¢y) - 1)

(A1)

Il

where we can obtain the nonsingular condition of J accord-
ing Lo the heading angle change. The similar way can be

applied to the other axis rotations.
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