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Abstract

This paper illustrates a new learning control for robot manipula-
tors using Lyapunov direct method. It has been shown that under
the proposed learning control robot manipulators are always guar-
anteed to be asymptotically stable with respect to the number of
trials. The proposed control is also robust in the sense that the
exact knowledge of the nonlinear dynamics is not required except
for bounding functions on the magnitude.

1 Introduction

There are a number of issues to address in designing advanced con-
trol system for robotic systems. The problem of obvious interest
is the design of controllets to guarantee the system performance
for the desired trajectory with acceptable accuracy. A new ap-
proach to solve this problem is iterative learning control. Iterative
learning control is a technique for improving the petformance of
systems or processes that operate repetitively over a fixed time
interval without exact knowledge of system dynamics. The appli-
cations of robotic systems contain a sequence of jobs and each task
in the sequence has a finite time span. In this application standard
robust (or adaptive) control does not have the ability to achieve
good performance during a finite period of time. Instead, a learning
control is therefore of great importance for such applications. In

practice, robotic systems are nonlinear and their dynamics are not

completely known e priori. In addition, if the unknown param-
eters of the system model is time-varying during the operation,
the control is getting difficult. In contrast to the adaptive control
schemes which fixed parameterization is required, the learning con-
trol schemes have no these requirements since they are searching
the better control input for the desired transient response of the
system for the same task on successive trials. At each trial the con-
trol input is updated by learning algorithms based on the previous
performances of identical tasks. The intuition behind this approach
is that we can take some advantages from the periodicity of the re-
peated task. From trial to trial, the periodic time function remains
as a constant at any fixed instant of local time. So, if a learning

control is designed properly in which it can learn the constant as

the simplest form of unknowns, the control can compensate both
uncertainties and nonlinearities of the system without the informa-
tion of system dynamics by updating the control input over trials.
To find such a learning control for a class of nonlinear systems, a
Lyapunov argument based on periodicity may be derived.

There have been several investigated topics regarding the learn-
ing algorithm, the proof of system stability, and the controller
implementation. A recent discussion on history and various ap-
proaches of learning control can be found in [10]. Since Arimoto’s
framework, the learning control has been based on two major prac-
tical and theoretical limitations; the requirements of acceleration
feedback and Lipschitzian condition (3, 5, 6, 7, 8, 9, 11].

It shall be shown that a new class of learning control based on
Lyapunov direct method always guarantees global asymptotic sta-
bility for robotic systems without those limitations. Although it
only be presented a learning control of rigid-link robot manipula-
tors, the principle can be applied to higher-order physical systems
such as robotic systems in the presence of actuator aynamics and
joint flexibilities because of its systematic technique using state
transformation.

This paper is organized as follows. Section 2 formulates the
tracking problem for rigid-link robot manipulators. Section 3 de-
velops a learning control for the system. Section 4 presents the
stability and the convergence analysis of the system under the pro-
posed learning control. Section 5 illustrates the simulation results

to show the effectiveness of the proposed learning control.

2 Problem Formulation

The dynamics of the rigid-link robot manipulator is described by

the following nonlinear differential equation :

M(g)i+N(g,9)=r 1

‘where

N{(g,9) = Vin(9,9)¢ + G(g) + Fad + Fo(4) + T

where ¢ € R is a vector of joint angle variables, M(q) is an [n x n]
inertia matrix, symmetric and positive definite; Vn(q, 9), G(g), and

F,(¢) are [n x 1] vectors containing the centripetal and Coriolis
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terms, gravity term, and static friction term, respectively. Fy is an
[n x n] diagonal matrix of dynamic friction coefficients and r € "
is a vector of input torque.

Let q%, ¢9, and 49 denote the desired trajectory that the robot
should track and we assume without loss of generality that they
are uniformly bounded functions of time for all trials. Since the
learning control objective is to obtain asymptotic link tracking, we

define the tracking errors to be
e=¢'-q é=¢'-g @

To design a control for asymptotic link tracking, write equation (1)

in terms of the tracking error given by (2)
M()i* - M(0)+ N(g,d) =1 ®)

The important properties of the robot dynamics that will be

used in this paper are as follows.

P1. Inertia matrix M(g) is symmetric and positive definite for all
gER".

P2. Coriolis/centripetal matrix Vin(g, ¢) is linear in ¢ and that its

dependence on ¢ is given as
Vin(2,9)w = Vinlq,w)i Vg weR"

In addition, we have some assumptions from mechanical proper-

ties of robotic systems for closed-loop stability analysis as follows.
Al. Inertia matrix M(q) satisfies
ml <M(g) <l Yqe®"

where m and. 7@ are positive, known constants, and I is the

[n x n] identity matrix.

A2. From the property of coriolis/centripetal matrix Vix(g, ¢), it
follows that

“Vm(ql q.)" < pV"‘(q)"d"y Vg,g€ R®

where pym(q) is a known, positive definite function of ¢.

A3. For all possible disturbance Ty, it is assumed that

To=pw+py YweR" 1184 < pa,

where 8, and f; are some unknown periodic functions, and

pd is a known constant. The Euclidean norm is denoted by

-fl:
3 Learning Control

Consider a first-order, i-th cascaded sub-system in an m-th order

error system:
#iy = KiMzicai)fiilerg, -z, 0G(D)
+905(214s 0 Tigy 1) + K (mica )i 4(8)
K @icageiva,g — ui (1), (4)

where subscripts i and j are the indices of subsystems and the

learning trials, respectively. Vector z; € R" is the transformed

sub-state from the original sub-state e; i of the i-th subsystem with
z),; = e15, added and subtracted u;;(f) € R" is the fictitious
control, (;(t) € R' is a vector of unknown time functions that
are invariant from trial to trial in order to be learned by learning -
control, and fi(z1,---,2i;,1) € R"* is known matrix function.
Matrix K; ; (::.-_1‘,,-) € R"*" is not necessary known but symme}.ric
and positive definite, and it is bounded as that

kI. < Kij <k,
d
g Kzl < pxi(zigy 0 2ig,t), (5)

where k and k are known constants, and pi; are known function.
It is assumed that we can determine scaler function pk;(-) using
dynamics of (i — 1)-th subsystem.

The vector g; j(21,4,---,2ij,t) € R" is an unknown function
which may include unknown time functions but bounded by known,

well defined functions p;i(-) as

i
llgis (g2 OIS Y palng, iy t) - lzngll,  (6)
k=1

which is locally uniformly bounded with respect to the state vari-
ables z; j to z; ; and uniformly bounded with respect to . It can be
assumed without loss of any generality that both bonding functions
pxi(-) and pix(-) are differentiable.

The proposed control is in the form of

o i -
v = - [51-'.; STz (m =i+ Dz + Fizigou
’ i-1

1 122
+5mig itk oy kz_:ly?t x| = fig - A

Hij(zrs, y2igt) + Lij(z1,- -, 2i g, 1), ]

where o > 0 is a design parameter, m is the number of cascaded
sub-systems in the overall system, H; ;(-) is the feedforward, ro-
bust, control part, and L; j(-) is the learning part. The iterative
learning contribution A;; that learns unknown time function is

updated from trial to trial by the learning law:
Aijpr=Aig+oaflj(eny, 1) i ®)

where A;p = 0.
Rewrite equation (3) as the state-space form

€1 = e

M~'(q) [M(9)i* + N(q,4) - 7], ©)

é2
where ¢ = [e1€3]7 = [eé]T.

In order to design the learning control, we rewrite the first sub-

system in equation (9) as follows

. A,
Tiy = €,

]

vy + (€15 — uy5)

i+ 225 (10)

]

where 249; = ¢y, — uy ;.
To formulate the fictitious learning control, compare the first
subsystem (10) to system (4), we have

=0, h=0, @=0, K=I,
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where 0 denotes zero vector or matrix with proper dimension. Since
there is no unknown time function in the first subsystem, learning

part is not needed. It follows from (7) that the fictitious control is
uy = =2z 4 (11)

The fictitious control u, ; provides stability property for system
(10) and state transformation is defined to be z3; = é;; — w5
. Thus, the objective of controlling of the second sub-system is
to make z2; — 0 as j — 0o0. To design the actual control law
7j, we first establish dynamic equation of the second subsystem in

equation (9) by taking derivative as follows :

. A . .
l;"' = eg.j - uu
= §+ MY g)N (g, 4;) — 42145 + 223
-M~(gj)m;
A - -
S K3} hiG) + 1+ K5j(-75) (12)

where K3; = M(qj) and uy ; = -21':|J =4z, 4 ~ 223.
Note that there are many possible choices of f3 5,(a(t), and ga 4,
and these choices yield different learning controls. Two typical

choices are discussed in the following subsections.

3.1 Learning Control with the Simplest Learn-
ing Part
To get the simplest learning part, we include all functions which
can be bounded by state variables into g3 ; so that we can have the
simplest choice of fa; and (3(t).
It follows from (12) that

i+ MY (g;)N (g5, 45) — 4z1 5 + 232

2 K31 hiGa() + 02, (13)
where f3;=1In,
G = M@+ N i)
= M@@)§ + Vm(d?,§*)é° + G(g")
+Fag’ + Fi(¢%) + T¢.

and using properties and assumptions of robotic systems.

M(g;)92.5
= [M(g)i* - M(¢))d* + N(gj.d5) = N(¢*,¢%)]
—=M(gj)(4=1, +222;)
= [M(g) = M@ + Vimg5, 6°) = Vimla?, 40
+2[ Va5, §%) + Vin (05, 45) + Fa = 2M(g) ) 214
~[Vin(gj, §°) + Vin (95, 45) + Fa = 2M(gj)] 22
+[Gg) = G + Balaj, i) + [Fu(dy) = Fald)).
It can be assumed without loss of any generality that disturbances
can be separated such that T§ = f; includes all periodic time
functions which can not be bounded by state variable and (T, —T§)
includes remaining disturbances.

To find the corresponding learning control, a bounding function
on g(-) satisfying condition (6) is needed. It follows that

g2l

< 1M (g5) = M) - N1l + 2011Vim (a5, 4 + WVim(gs, 85)1)

+HIFall + 1.8p4 + 275] - flz4,4ll
HVin(ag, &M + NVan (g5, M Fall + pa + 23] - 22,5l
H1Vin (g5, 4%) = Vi (g, 41 - g
HIG(g;) ~ Gl + IFu(43) = Fu(d*)l-
To design the feedforward control part, we define bounding func-
tions as follows
1M (g5) = M) < pm(as, a®)llzs sl
1Vin (a5, )1 < pvema (5114
{1Fall < pra
1G(a;) - G(a*) < palas, a1 4l
NF(d5) = Fo @O < pro(aj, i)z sll + liz2sl),

where pp(-), pymi(-), and pp,(-) are known, positive definite func-
tions. pr4 is a known constant.

It follows that

19254 < pa1(ass 45, 0% 4% llwa il + p2a(95, 45 4, 49) il
where
() = m oa (a5, e Ml + 2pvma (g5l + 2oven (05)llds I

+2pr4 +3p4 + pa(95,4°) + 20F0(gj, §)] +4

and

p() = w7 [pvmi (gl + pven(as)ldll + pra + pa

+or.(95,§%)] +2

where both pa1(-) and pa3(-) are some known positive definite func-
tions.

It follows from (7) that actual control input 7; is in form of

o — .
o= g%yt I+ Wizas e+ pvm()llisl 22
1
+ Z'ﬁ’g}, z25+ 21,5+ Az
A2J+1 = ATJ tazy; (14)

where a > 0 is an arbitrary design constant and Az = 0.

3.2 Learning Control with the Simplest Feedfor-
ward Part

Since non-parameterizable dynamics along the desired trajectory
are can be compensated by learning control, it follows without loss
generality that
M(9)q* + V(95 45)d; + Glg5) + Faij + Fu(i*) + B2
£ fialt), (15)
Note that f3(-) only includes ¢; and g; so that it can be some known
matrix.

To design the feedforward control part, we derive the bounding
functions for g3 ;.

925 = M () (g5, 45) + Fo(45) — Fi(¢*)] — 4215 + 2225
It follows that
floagll < BM~' @) - LB Cas, N + HF.(d5) — Fa(éh)ll]
+Hllz1 5l + 2|22l
- < gn() llell + 9220 llza sl
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where
gn()) = m™'[3pa + 20r4 (95, §%) ] + 4.
and
923() = m Y pa + pr.(g5, 4" + 2.
where both pa;(-) and pa3(-) are some known positive definite func-
tions.

It follows from (7) that actual control input ; is in form of
a o .
o= Efz 17 z3,j + T2, + Wi paazaz + pvm(g;)lldill 22,5
1
+ 3 T2iPh 21+ S By
Aggp1 = Agj+of] oy
where Aj o =0. ‘
Note that the dynamics equations given by (10) and (12) can
be viewed as two interconnected systems representing the overall
closed-loop dynamics. In next section, we show the stability and

the convergence of the system under the proposed learning control

scheme.

4 Stability and Convergence Analysis

Consider the Lyapunov function candidate defined by

T
V= [ 1) - B . (16)

1t is apparent that [(;(t) — A; ; ] is the learning error. Under learn-
ing control law (8), the difference of the learning errors between
the (§ + 1)-th and j-th trial is given by

8[Gi(t) — Aij] [G() — A jpa] = [G(2) — Aij)
—aflizij. (17)

1t can be verified easily that the difference of Lyapunov function

A

between the successive trial, §V; ; = Vi j41 — Vi j, can be rewritten

5T
iy = /0 {816(r) — AugIT61G(7) - Aig)
+26[G(7) = i g]T[C(T) - Ais] } dr. (18)

The effectiveness of the proposed learning control is shown by the

following lemma and its proof.

Lemma 1 : For system (9) under the control (14) or (16), the
incremental change of Lyapunov function with respect to trial, §V;,

satisfies the inequality that

8Y;

§Vi; + 6V

T )T
Z3,j K!J”Jlo

IA

1 s 1
—~2a [5 frlr,jzl.i|o + 3

T 2 T 2
[ et ar s [ el dr]
0 [}

Proof: Under control (7), system (10) becomes
2),; = —2zj + 23 4,
and (12) becomes

. - a .. _
225 = Kz,;fi,iCZ(t)"'y?.i'§K1,jl'f7,l'f17:j’2.1

"y T e 1. _
—K,; z3,j — ka K;,} Z3,5 P21 — §K,} Z3j P2
1.2 - -
*;Fz K3jzai0h ~ K321y — K} fag - Aoy
o -
= yQJ—K,; [Ef"j.f{} +1] T2, _F21(1}:24P1L

1 172 -
~3K5i z25pra = R Ko v el - K3 2y

+K3] - f2,1162(8) — As ).
1t follows that
T 1Oy~ Ayl =21y +2=1.j—12.j. (19)
and
fag - [G(t) — Agy]

. o -
= K32 + [51';,,' ¥ 1] T2+ k2z25p22

1

1 2
+5 225 K2+ 7k 2205 + 71,5 — Ko, - 42,4(20)

2

where K;; = M(g;). Note that two typical choices are presented
in the previous section for functions fy;,(a(2), p2s, p21, and g2 in’
equation (20).

Substituting equations (17), (19), and (20) into equation (18)

. 8T
6Vl = - s 2&1’{‘,-[5:1.,' + 211',' - Z;J] dr

o7 ‘
+/o {o?2]; fa; SR % - 2ax]; [Kajta;.
a T 1
t5fai fayoai+ 2y kaza pa + 522 0k2
1-2 2
3k 22500 + 21— Kaj 0| ¢ dr
§T §T
= -20/ 2le'j:i:‘1,jdf—4a/ "zl_j“?dr
0 [}
5T | T
+2a / 2] j23,5dr — 20 / 2] jKaiazdr
0 L)
5T T
~2a [ fmydr-2a [ legliar
0 0
8T _ 1
—2(!/ z3; [kz T2 P22t 5225 Pk
0
12
+3ka 22 0% ~ Kaj 'M] dr
oT 7
—ax];zy ;| —azl, Kajzas|,
sT -
wa [ a1 ool dr
1]

§T 2 T
—ta [ eyl dr 2 [ eyl i
. 0 0

8T r_ 2 1 2
f"’“/ﬂ [’W"Zn.ill P2+ gllza5" picr

IA

152
Bl = e Nl ] .
Applying conditions (5) and (6), we have
17 '

T Lrid §T
< -azf;z 5], -azl; Kajza )
&T 9 8T
o [l ar=2a [ oo i ar
0 ('
o T 2 2 2 ,T_
=5 [ Blestion?dr 20 [ Fapo e szl de
]

1 r L o7
S~ [5 sLitnily + 5 22 Kaseagl,
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8T 2 T
+ / lza g7 dr + / |tzz.j1|’dr} ,
)]

in which inequality a2 + b2 > 2ab is used. a]

The lemma shows the property of Lyapunov function (16) for
system (3). From the lemma, it can be easily concluded the sta-
bility and convergence of the system under the proposed learning
control, as summarized by the following corollary.

Corollary 1. Under the control (14) or (16), system (8) is globally
asymplotically stable. .

Proof: From the result of lemma 1
2 T
8Vi = —a )zl Kujzs;
k=1

2 4T .
=2 [ heeiar,
k=170

where K j = I,,. For leatning control implementation, initial con-

0

ditions at each trial are either manually set to zero or kept to the
final conditions of the previous trail, no resetting. In the case of
resetting of initial conditions, the term

T

2
T
- E’U Ky jza 5
k=1

o
is non-positive. In other case, no resetting of initial condition, the

sum of the above term from the first trial to the p-th trial is
oT

P2 2
-a E E =1 ; K jzej = -a Z:f,,(cST) Kepzi o(6T) dr

j=lk=1 ° k=1

2
+a ) 270(0) Ka 022 0(0) dr,
k=1
in which there is only one possible positive term and it remains
constant as p increases. Thus, we have that, in both cases of initial

conditions,

o o 2 LT
E6Vj < Cini — 20 ZZ/ "Zg.j"’ dr
j=0 o

Jj=l k=1
for some constant C;,; > 0, ot equivalently,

[ ]

T
23 [ onslltdr < i+ 8%

j=1k=1Y0

from which global asymptotic stability can be concluded. D

5 Simulations

We present simulation results of the theoretical development in
previous sections using SIMNON®, A simple two-link manipulator
is used to show the performance of the proposed learning control.
The specification of the modeled manipulator is following:
m; = my = 1.0Kg, h=l3=10m

The chosen initial conditions are : ¢1(0) = ¢2(0) = ¢:(0) =
¢2(0) = 0. And the given desired trajectory is ¢f(t) = ¢i(t) =
1.0 — cos(t). The time span of each trial is chosen to be 6T = 2.5
s. And the disturbance is given as

5 5¢
n=[ 3o ]

The performance indices to evaluate the performance are given

a a T
Wilo 2 max, Vs, 1,5 [ i), d.

For a two-link robotic manipulator, we have
1 1
Vi = ghi(ely + 5 )+ gllens + kaer) + (ers + kaey ;)* ).

where k; = 1 and k3 = 2 are chosen as design parameters.
Our simulated robot is modelled as links with point masses at
distal ends of the links, so the dynamic equation of the manipulator

can be written as

n mal3(§1 + §2) + malily cos(g2)(241 + §a)

+(my + ma)ligy — 2malyly sin(g2)d1da
~malyly sin(g3)§3 + (m; + ma)lig cos(qy)
+m3lag cos(qy + g2) + fri(d1)
= malily cos(qa)dr + mald(§1 + §2) + malyla sin(g2)d}
+malag cos(qu + g2) + Jra{d2)
where g is the gravity, ; is the output torque of a motor reflected
to the joint axes, and fri is friction function, i = 1,2. Comparing
the above equation to (15), we have fz; and (2(t) for the learning

control with simplest feedforward part as follows

we[5 2] o-[g0]

where
A=

[ 1 cos(gs) sin(g2)dids sin(ga)d] cos(q) cos(gr+g) ],

Fy=[1 cos(gs) sin(ga)ii cos(qr+g2) 0 0].

and

mal3(§ + §4) + (my + mo)1G] + fs1 sin(d])
malil3(2§{ + §§)
, —2mah 1y
410] —rmabl )
(my + ma)hg
L mylyg

[ maB3(§f + §5) + f52 sign(ds)
malilagy
maly .
40 il
0
0

For the learning control with simplest learning part, f2; is a [2x 2]
identity matrix.
The learning control (7) and (8) are implemented with the fol-

lowing choices:
a=50, =9, Ao=00 pn=pi=20+ gl

The simulation results of the proposed learning control are given
in Figures 1~2, they show the eflectiveness of the control. Also the
simulation results show that the case of simplest feedfoward control
part is better than that of simplest learning control part for sys-
termn convergence. This result implies that the first control scheme
results in better performance as the learning control part compen-
sates more uncertainties and nonlinearities of the system; that is,
enhancing the learning capability is more effective than the other

case to control the robotic system. So, it will be a future research
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topic to investigate better learning scheme. The convergence rate
for both cases can be adjusted by a.

6 Conclusions

A new class of learning control law based on Lyapunov direct
method is presented. The idea of recursive design is used to develop
a Lyapunov argument. Using the new Lyapunov argument, contin-
uous and differentiable fictitious learning controls can be designed
to provide global asymptotic stability for the cascaded first-order
sub-system separately. Then the fictitious controllers are actually
embedded inside of an overall control strategy, actual control in-
put in the last cascaded sub-system. Com;;aring with the existing
learning control laws, this learning scheme has several advantages:

(i) the recursive mapping provides systematic technique to design

learning controllers; (ii) the differentiability for the controller be-
cause of the linear learning law; therefore the control scheme can be
generalized and easily applied to multiple integrator systems such
as robotic systems with actuator dynamics and/or flexible joints.

The learning control requires only state feedback and repeatabil-

_._ ity of taske, and removes all assumptions commonly required by

existing results: acceleration measurement, Lipschitzian condition,
resetting of initial tracking errors, etc. The simulation results show
that the learning control effectively compensates for nonlinear un-

certainties in the mechanical dynamics.
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Figure 1: Sim‘plest Learning Control Part
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Figure 2: Simplest Feedforward Control Part
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