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Abstract

This paper proposes a method of suboptimal control
for DC servomotor using a neural network. First we con-
sider a nonlinear observer which is constructed by using
an approximated linear dynamics of the noulinear system
and a neural network. The reccurent neural network is
used for the learning of the dynamical system. Next we
consider the nonlinear observer. Then, we apply the ob-
server output to nonlinear optimal regulator and confirm
the effectiveness by applying the method to the inverse

pendulum systern.
1. Introduction

Over the past few years a considerable number of
studies have been made on the neural networks applying
to the various engineering problen,"~?) especially to the

control problem, and a large number of studies have been

made on the nonlinear optimal control likewise. In this.

paper we propose a inethod of suboptimal control in non-
linear system with some unmeasured state variables. We
meel some problems whenever we consider the nonlincar
control problems. llere we consider the two problems
among them. ‘

One is the nonlinear observer, and the other is the non-
linear optimal regulator.For the observer we consider the
nonlinear observer which is constructed by using an ap-
proximated linear dynamics, then we devise the nonlinear

obscver which rellects the nonlincar characteristics. The

reccurent neural network which is useful for the learn-
ing of the dynamical system or for the online learning is
used.

For the regulator we use a nonlinear optimal regula-
tor using a Lyapunov-like function that we previously
proposed.?) We apply the nonlinear observer output to
the nontinear optimal regulator and confirm the effec-
tiveness by applying the method to the inverse pendulum

systen,
2. Nonlinear System and observer

We consider a dynamical system in which the non-

lincarity exists on the state vector,
& = f(e) + Bu (1)

where @ is an n-dimensional slale vector and u is an
r-dimenstonal control vector. f(zx) is a nonlincar vector-
valued [unction and B is an n X r malrix. We rewrite

Eq.1 as follows;
T =Az+ Bu+ (flz)- Ax) (i=1,m) (2)

where A; is a lineatized matrix which most suitably ap-
proximates the nonlincar function f(a) at the operating
state.

We consider the nonlinear observer shown in Fig.1
in which the difference between the nonlinear term and
lincar one is compensated by using a neural network.

In Fig.1 the system dynamics is described by a discrete

onc. The neural network plays the role of compensator
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for the nonlinear factor. When a test input u, is given,
we assume that the estimated state by the linearized ob-

server is presented by [5q.3.
(El+1 = /\,‘1"31 + but (3)

where &, shows the estimated state using the obsereved

data until the time L.
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Fig.1  Nonlinear observer using lincar approximation

Wlheu the output of controlled abject, y,,, is obtained,
the cstimated state &, is given by the output éx .y of

the neural network.
Typ1 = 841 + 6Ty (4)

Y141 = cep {5)

We define the ervor eyy; belween the output y,,, and
Yig

€ty = Yy — ?71+1 (6)

"Then, the estimaled state of the controlled object is given

by the following equation.

Ryyr = Tyyr + l('.‘hu -9 | (M

where 1 is the coeflicient vector to hasten the conver-
gence.

"To derive the learning algorithm of the neural network,
we define the next error function.

1

1 . .
Jip = T(yt+1 - '.'/z+1)2 = E(yzn - "3"Jt+l)2 (8)

2

Then the modificd amount of the coefficient is given by

the following.

iy . 0x 4y
by = —a T (Hep1 — Uep)e Dw (9)

where a is a learning constant. From the next relations

we have I5q.13.

s _ ey | Og(&eu)
ow ~ Ow + Jw (10)
aét+1 ('):3:, r?u,
= ow T ow (
0%y J 03¢

dw ' ';)_U;I

f):i:H,] a.’;fl

(?w = A,(I - lc)% + (13)

Substituting the Eq.13 into Eq.9 we get the eventual

&+ Uy, —cwy)) = AT — lc)-(ﬁ (12)

Og(z4, u)
dw

modified amount of the coellicient

Swigy
. 0441
= (yH-'l - yl+l)CW
dg(&, 1)

. 0%,
= (yt+1 - yt+1)CAi(I - lc)% + Jw

(14)

We can also consider the nonlinear obscrver illusirated

in Fig.2.
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Fig.2 Nonlinear observer

&= &)+ Bu+ Ky - Ca&) (15)

where y = Cz is the oulpul vector whiclh is obscrved.
Provided the error vector e

e=x—& (16)

e=KCe+ f(&) - f(&) (17)
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By compensating the dilference of nonlincar term and
lincar one by the neural network, the nonlinear observer

is constructed.

3. Reccurent Neural Network

When we apply a neural network to the control
problem of a dynamic system, we meét the problem that
a convenlional neural network is able to learn ouly the
input-output relations as an algebraic mapping. To learn
the dynamics of the system, we use the neural network
which has the reccurent connection between the hidden
units. We call it the reccurent neural network. In the
neural network shown in Fig.3, the units of input layer

get the external input.
]k(i) = Hk(i) (18)

Hidden layer

Input layer

[Fig.3 Reccurent neural nelwork

The units of the middle layer get the signals from the in-
put units and the signals from the one step former middie

layer, and send the output H;(t).

m

m],]j(t) = Z (l]'k‘(l.k(i) + ibﬂ Hl(t — ]) (1())
k=1

i=1

() = fu(lu;(t)) (20)

The ontput unit get the output To;(t) from the middle
units as an inpul, and send y;(¢) as an oubput of the

neural network.
Tyi(t) = 3 i l;(t) (21)

7
yi(l) = 0i(1) = [o(Tui(1)) (22)
The relation of the inputs and outputs in the whole neu-

ral network is given as {ollows.

yi(t) = fu(zn: c,']-_[”(i ajeng(l) + XT:l)J‘I H,(t—1))) (23)
j=1 k=1 i=1

To operate the neural nelwork, we must calculale the
derivative of the error function for the coupling coefli-
cient, and there are two mecthods for it. Tn the method
to have the derivative of the error function for the cou-
pling coellicient using directly the derivative of complex
function, we get it by using the next derivative ol the
inpul for the coupling coeflicient.

! ITy;(t aTy;(1
Bn(0) = T 40y = T
re Pq

that is, the same error signal given in the hicrarchical

neural network.

QLA s o OB 2
T = MO G =0 o9)
OL, (1)

o) fl';(fl'uj(l));gm'(i)cij (26)

By using the above equation.

= ‘ASOP(l)Hq(") (27)

= 3 by () Bia() (29)

Obyy(1) =1
B i
Bape (1) = 2 P10V (20)

And we have the following equations.

BjPﬂ(”) = Hq(“‘ - 1)51'1' + Z bjlf;l(»rl‘lll(tl - 1))Blm(t - ])
i=1

_ (30)

Ajpg (D) = wgbp; + 3 bt Sy (Tt — 1)) Ay (t — 1) (31)

=1

This method is the most ellective for the online learning

neural network.

4. Optimal Regulator using Lyapunov-like

Function

Although diflerntial equations describing the actual
behavior of a dynamical system are generally nonlinear,
the linear optimal control is ellective wlhen the opera-
tion of the system is restricted to a small region around
a chosen operaling point. But, in an inherent nonlinear
syslem which shows strong nonlinearity, the optimal con-
trol often fails, and it is desirable to design the nonlinear

control method for the wide range operation. Ilere we
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show a method of suboptimal control for a nonlinear dy-
namical system using a ncural network.® We rewrite the

next noulinear system equation.
= f(z) + Bu (32)
We consider the performance criterion Eq.33.

7= [Tlat=) + %u‘Ru]dt (33)

Vix,t) = n}iln /tm[q(m) +

If we assume that the minimum value of Eq.34 is finite,

%u‘]{u]dt (34)

the steady state Hamilton-Jacobi-Bellman equation be-

comes the following equation.
1 .
n}in[q(m + EuTRu. + Ve(z, )T {f(=) + Bu}] =0 (35)

Then, the optimal control which satisfies Eq.35 is given
by I5q.36.
w=—R7B Vp(a,t) (36)

whete Vg (x,1) is the gradient of Lyapunov-like function

Vix).
5. Numerical Simulations
5.1 Example System

We consider a simple nonlincar descrele system as an

example.
e
T2, 041 11 T 0
Tri41 = T4t + 53"?"1,t+15$77(—$:.2,¢+1) (38)
o4t = Tt + 6’1m2 (pr€Tp(—a ml ,“) (39)
Y1 =€y, c=[0, (] (10)
T = [Trgrn,  T2em]” (41)

We use the reccurent ncural network as the nonlincar
observer in the above system. The network has two neu-
rans in output layer, eight neurons in middle layer and
three neurons in input layer. The outputs of the neurons

in each layer are given by the following respectively.

filz) = = (42)
fn(:L‘) 1++])(—1) (43)
Jo(z) = = (44)

The relations between the inputs and outpuls ave given

by the following.

28: i H(1) + 0 (45)
)

11(Tyr (1)) (46)

11" ZUJL]k l) +Zbﬂ]‘h f — 1) + v; (47)
k=1 =1

The derivative of the outpul for cach coupling coelficient
is given as follows.
We get the derivative {or the coupling ¢;; between middle
layer and oulput layer.

g

B = H(by (1)

Dcpg

For the coupling bj; between middle layer and middle

layer.
(')g; 8 a[’_,(t)
k- AT ci;
Jb,, JX=:, 7 9b,,
_ 8 (?T,,,(t)
= 3 el 1) e
8
= Z Cij fll(T" (1)) Bim(1) (19)
j=1

8 Ot -

| 1) 81y, (t—1
Bip(t) = Hy(t =18, + 3 by ) 8Ty, (t—1)
=1

dly(t—1)  db,

8
= Ho(t =18+ D b3y (Tu(t = 1)) Byt £60)

i=1

For the coupling aj; between ‘input layer and middle

layer.
dg; 8. 9l ( )
5(7,,: - ]_;cu Jday,
8 OT,
= S el (T, () ZoY
j=1 pq
8
= 2 ciifu(Ti, (1) Aspa(1) (51)
=
B 8 At —1) 81y,(t—1)
Aivq(t) = 1)6,,] + Z le Ih(t — ]) (')r.l,,,,

= IUMP:"’Z lfll H:

j=1

= 1)) Aupg (t —(BR)

For the offset ; of output layer.

Dy;

(')0,’ 5T’i (5})



For the offset v; of hidden layer.

dg; LRY/20)
0_1/,, = ;c'j dv,
- i Ty, () —52—= ”’(t)
= > i f1(Tu,(1))Csp(t) (51)

.
it

. 8 OH(t—1) dTy,(t—1)
Cnlt) = 67’]'*2"]’01,,,0-1) v,

8
&pj + D b S (Tu, (¢ — 1))Cip(t — 1) (55)

j=t

Fig.4 shows the comparison among the output of
the observer using a linear approximation, the output
of the nonlinear observer and the output of the original
system(plant). 1t is observed that the output of the non-
lincar observer using the neural network tracks well the

output ol the original system.
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I'ig.4 Comparison in the outputs of observers

Similarly Fig.5 shows the comparison among the outpul
of the nonlinear observer using a reccurent neural net-
work and the output of the nonlinear observer using a
conventional neural network. It is seen that the nonlin-
car observer using the reccurent neural network is suit-

able for the case of dynamical and online estimation.

T ——————]
i Ty Plant -
a [ / T4t Recoorent NN, |
~ o}
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A\ /TZ00 Conventional NN
/ | ]
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Fig.5 Comparison in the outputs of observers
5.2 DC servomotor with an inverted pendulum

Next we consider a DC servomotor with a inverted
pendulum as an example which hias a nonlincar load char-

acleristics. Invert pendulum is well known as a load with

a nonlinear load charactleristics.

IMig.5 Inverted penduluim system with a DC servomotor

The system equations of the inverted pendulum shown

in Iig.5 are given as {ollows.

ml?) = lmgsind — T}, (56)
Ty = 10K,,1 (57)
Li+RI+ V=V (58)
Ve = 1045,0 (59)

where L and R are the inductance and resistance of the
armature winding of the DC motor. The induced Voltage
14 is proportional to the angular velocity, where K, is
the induced voltage constant. Regarding 0, § and I as
state variables; and voltage V as control variable, we let
vy =0, 20,= (), x3 = I and v = V. Then we obtain the

following simultanious differential equations system.

.’i'] = I3 (60)
. _ g . ]"m

o= A P 0 (61)
. K n 1

T3 = —lO]—Jb'Lz 7% + Tu (62)

We have numerical simulations for the case g
9.8m/s*,m = 0.5kg,! = 0.3m, K,, = 0.01Nm/A K, =
0.02Vs/rad, L = 20miHandR = 0.190. Then the follow-

ing equations are obtaincd.

T o= 1 (63)
@2 = 32.67sinz, + 2.2213 (64)
#y = —w3 — 5025 + 50.0u (65)

In the simulations, we sct the desired stale to an un-

stable equilibrium point(inveled pendulum). I'ig.6
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sliows the output of nonlinear observer when an appro-
priate test input. In the case the oscilation’s amplitude is
simall, the oulpul of nonlinear observer converges to the
real output. I"ig.7 shows the output in the case the oscila-
tion’s amplitude is comparatively large. In this case the

output of observer doesn’t converge to the real output.

7 Nonlinear Obmrver

e

Fig. 6 Output response ol Nonlinear Observer

200 ——

A Nonlinear Obsexver

~100 . P
0 100 200
107 see

T'ig. 7 Output response of Nonlinear Observer

We set the Lyapunov-like function V(&) and the weight
coeflicient matrix R in Eq.36 as follows.

96.73 16.53 0.66 T
16.57 2.93 0.11 T2

0.66 0.1 0.02 )\ 23
(66)

R=1 (67)

V(z) = (21,72, 73)

Fig.8 shows the case the nonlinear oplimal regulator

using 15q.36 is added to the input.

4 T Ll

° _{

T
o (L1 00
100 ec

FFig. 8 Output response using Noalinear Optimal

Regulator
6. Conclusion

We have proposed a method of suboptimal control

in nonlinear system using a neural network. It scems

that there exist a [imit in the nonlincar observer which
is constructed by using an approximated linear dynam-
ics. Although we have proposed the method of nonlincar
observer, in the strong nonlinear range, it doesn’t give
the good performance. There is room for improvement.
So far as the inverse pendulum system is concerned, as
nonlinear optimal regulator is efleclive, the nonlinear ob-
server which works in the wide range is the problem re-

mained.
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