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Control Systen with Neural Networks for Product Crystal Size of Sodium Chloride
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ABSTRACT

A sodium chloride crystallizer shows oscillatory
and nonlinear characteristics under its nucleating and
growing process. Because these characteristics vary
with operational condition, we can’t control the
product crystal size exactly with a PID controller or
a sequence controller. Then, we make a model with
threefold neural networks for the laboratory equipment
that is a jet mixing crystallizer. We try to control
the product crystal size with its neuro-model, and we
reach the conclusion that our neuro-model is
applicable to the practical crystallizer.

1. INTRODUCTION

Japanese salt manufacturing process may be
composed of two stages. First stage is for
concentrating seawater with the ion-exchange membrane
electrodialysis system. Second stage is for
concentrating the brine into crystal salt by heating
with vapor.

The core of the problem for producing the desired
size crystal is oscillatory and nonlinear
characteristics of crystallizer under its nucleating
and growing process. Because these characteristics
vary with operational conditions, we can't control the
product crystal size exactly with a PID controller or
a sequence controller

The conventional way for producing the desired
crystal size is as follows: (1) we design and make
the specified crystallizer matched with the desired
crystal size. (2) An expert operator adjusts
operational condition of the crystallizer with his
experience and intuition.
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However, as the stable range of the crystallizer
depends on operational condition, it is difficult to
produce the irregular crystal size with the unknown
single crystallizer. So, it is indispensable to
getting the exact characteristics of the crystallizer
to estimate exact operational condition for producing
the irregular crystal size.

The purpose of this paper is to propose a
neuro-mode! of the crystallizer for producing the
irregular crystal size with altering the operational
conditions. We find that this neuro-model can cancel
the effect of the known disturbance in the experiment.
Then, we choose seeding rate as a new operational
factor. This rate concerns the nucleating process and
can suppress the oscillatory characteristic phenomenon
of the product crystal size. We make a model for
controling the product crystal size with measuring it
and operational condition of the laboratory equipment.

Here, what has to be noticed is that the measured
data of the product crystal size shows asymmetrical
distribution for axis of time base. If we make a model
with the average of asymmetrical distribution data, we
can't obtain accurate it.However, our neuro-model uses
the maximum data, the representative data, and the
minimum data in the asymmetrical distribution of the
crystal size. Therefore, we can obtain accurate it
using the distribution data.

2. CONFIGURATION OF CONTROL SYSTEM
2.1 LABORATORY EQUIPMENT
We used an evaporating jet-mixing type

crystallizer of 500 liters capacity. shows in Figure 1.
We control individual local loops on the laboratory

-~ 725 —



Seed Crystal Size

Sood Crystel Evaporation fate

Hest
Exchenger

Uolunetric Suspension Dersity
0f Crystal In Crystallizer

™ Product Cristal Size

Conposition Ratio

0f Sodiun Chloridn Slurry Discharge

Figure 1 A sodium chloride cristallizer
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equipment using DDC system and sequence controler for
making its local loops stationary state and total
system stable state

The point to control cfystal size is how to match
growing process with nucleating process. The grown
crystal is easy to nucleate. The nucleated crystal is
easy to grow. Then, we use seeding rate because of
this rate can suppress the oscillatory process of the
product crystal size. Moreover, we use neuro-model
becase of getting the exact characteristic of the
crystallizer simply using its learning function.
Configration of control system is shown in Figure 2

The operational conditions for producing the
crystals of 400 micrometer are as follows: (1) Seed
crystals are prepared mean size of 100, 200, and 270
micrometer, (2) and are fed into the crystallizer at
a constant rate between 2 and 36 kilogram per hour.
(3) An agqueous solution of sodium chloride evaporates
at aconstant rate of 50 or 100 kilogram per hour.
(4) Product crystals are removed from the crystallizer
to maintain a constant suspension density of 4, or 7
(5)The composition ratio of sodium chloride in the
aqueous solution is between 14.00 and 27.81.
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Figure 3 Configration of neuro-model with threefold neural networks
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2.2 CONTROL SYSTEM WITH NEURAL NETWORKS

It is the problem of estimation using models that

there is not a standard to judge the matched range

between models and objects. If we try to estimate out
of the valid range of the model., it is likely that
estimated accuracy of models goes down. Therefore, we
can't believe estimated value using models without

checking the valid range of the model.

Our neuro-model for producing the desired size

crystal is shown in Figure 3. This model is composed
of the threefold neural networks. Also, individual

onefold neural networks are composed of several

nultilayer neural networks. Since multilayer neural
networks have height capability as an approximate
realization tool of nonlinear mappings, we find that
our neuro-model has higher flexibility than linear

regression models.
The measured data of the product crystal size are

distributed asymmetrically for axis of time}base

because of the oscillatory and nonlinear
characteristics of the crystallizer. Our neuro-model

uses the measured data of the product crystal size
( the maximum data, the representative data, and the
minimum data in the asymmetrical distribution ), and
five operational factors( evaporation rate, seeding

rate, seed crystal size, volumetric suspension density

of crystal in crystallizer, and composition ratio of
sodium chloride ).

Our neuro-model can include the asymmetrical

distribution of the measured crystal size with the

lower neural networks NN; and the upper neural
networks NN* in threefold neural networks, so that it

is possible to get the lower and upper characteristics

( the interval characteristic ) for the asymmetrical
distribution of the measured crystal size with made

neuro-model. Also, this neuro-model can get
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representative characteristic as the most dense data
in the asymmetrical distribution with the middle
neural networks NN* in threefold neural networks.

We must make our neuro-model on condition that we
satisfy as follows:

g:(X:) Sy, <+ (1)

g* (%) 2y, - (2)

Be(xp) Sg* (%) Sg* (x:) -+ (3)
Xp=[X1p. X2p, * s Xnpl» (p=1,2, -7, m)

where g;(-), g*(), and g*(-) as inputs and outputs
function correspond to NNy, NN%, and NN*, x, denotes
n inputs as a vector under the pattern p, y, denotes
targets.

Learning law is denoted as follows:

g:(7) ¢
min SEqy <+ (4)
if yr2gs(Xe)
Ere=r (22 (x:)-y5)2/2 -+ (5)
Se=1 (yp0.) 1" (is) -+ (6)
if ye<gs(xs)
Bev=(gs (xp)-y2)2/2 (D
8 »=(yp-0,) ' (i) -+ (8)
gx(-) :
min ZE.* ++(9)
Box=(g* (x:)-y:) 2/2 -+ (10)
0 p=(yp-0,) " (ip) -+ (11)
g () :
min ZE.* -+(12)
if yo>g* (x5)
Ee¥=(g" (%) -¥5)2/2 -+ (13)
8 p=(yp-0p) ' (i5) -+ (14)
if yo=g*(x,) :
Be¥=rg* (x:)-v:)2/2 -+ (18)
0527 (ye-0:) ' (ip) -+ (16)
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Figure 6 Simulation results using
neuro-model with threefold
neural networks
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where i, and o, are the input and output, E, is the
evaluation function, f'(-) is the derivative of the
semilinear activation function. y is weight parameter
for the error signal 0, that varies inversely as the
learning time

The weight of the networks is adjusted by the
backpropagation:

Av=aAw + 10,00 c (17
where w denotes weights, A is its deviation, 7 is
the learning rate, and a is a constant which
determines the effect of past weight changes on the
current direction of movement in weight space

This model can judge the validity of the estimated
representative data g(x.)* between the estimated
maximum data g(x,)* and minimum data g(x,)s according
to their sequence relationship :

the capacity of this mode! is shown in Figure 4,
Figure 5, and Figure 6. These figure show the
correlation between the measured crystal size and the
estimated crystal size under the same operational
condition. Figure 4 shows that the linear regression
‘model does not fit the crystallizer that has nonlinear
characteristic. Because the distribution of crystal
size is asymmetry, we find that Figure 6 fits the
measured crystal size compared with Figure 5.

3. EXAMPLES OF CONTROL FOR PRODUCT CRYSTAL SIZE

3.1 ESTIMATION OF CRISTAL SIZE UNDER CERTAIN
OPERATIONAL CONDITION

In case the set value of the evaporation rate
varies from day running to night runing, an expert
operator estimates the product crystal size according
to the variation of operational condition with his
experience and intuition. Each operator has individual
experience for the trouble or the variation of the
running state, so that he has individual standard
Judgment to estimate the product crystal size. [t is
likely that operators do individual operation with the
individual standard judgment under the same condition.
There is not an absolute proof to operate efficiently
for all operators.

Then, we make a model with inputs and outputs for
the object, and estimate outputs for unknown inputs,
as shown block chart in Figure 7. Here, we suppose
that transfer function Gq(s) is first order lag and

dead time:

-« (18)
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where k is a gain, T is time constant, s is Laplace
operator, L is dead time. Resultingly, this figure
shows that we can estimate a gain k1 of transfer
function G; (s) using a model.

The result of the experiment is shown in the
Figure 8 under the experiment condition that is listed
in Table 1. We estimate the product crystal size for
the variation of evaporation rate. Because result, the
maximum value, the representative value, and the
minimum value is 493, 463, and 421 micrometer. This
model is made with much data about 400 micrometer
Therefore, -a valid range about 463 micrometer in
figure 7 tends to be wide, as compared to its about
400 micrometer. Because the measured product crystal
size after the variation is about 470 micrometer, we
find that the estimated representative value matched
the measured crystal size, and that we can estimate
the product crystal size exactly using our peuro-model.

3.2 ESTIMATION OF OPERATIONAL CONDITION FOR DESIRED
CRISTAL SIZE

We must have the ability to estimate operational
condition exactly to produce many kinds of the product
crystal size. However, an expert operator searches the
optimal operational condition with trial-and-error, so
that it is difficult to control the product crystal
size exactly.

Then, we make a model, and estimate an optimal
input for a desired output, as shown block chart in
Figure 9. Here, we suppose that transfer function G (s)
is first order lag and dead time:

Gz(s)=-11%§;——e-L2°
Resultingly, this figure shows that we can estimate an
inverse gain 1/K, of transfer function G,(s) using a

-+ (19)

model.

The result of the experiment is shown in the
Figure 10 under the experiment conditions that is
listed in Table 2. We estimate seeding rate for
producing crystal of 400 micrometer. As a result,
seeding rate is 9.6 kilogram per hour. The measured
product crystal size after the variation is about 390
micrometer. The desired crystal size matched the
measured crystal size on steady state. Therefore, we
find that we can estimate optimal operational
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condition for obtaining the desired crystal size using
our neuro-model.

3.3 DISTURBANCE COMPENSATION WITH VARIATION OF
OPERATTONAL CONDITION

For keeping steady-state on the crystallizer, it
is necessary to have the ability to obtain the
characteristic crystallizer exactly. to estimate the
effect of the known disturbance exactly, and to
estimate the optimal operational condition exactly to
compensate it. An expert operator does those with his
experience and his intuition, and searches optimal
operational condition with trial-and-error. However,
it takes long time to do these, and it is difficult to
control it efficiently

Then, we make a model, and estimate the optimal
input to compensate the known disturbance, as shown
block chart in Figure 11. Resultingly, this figure
shows that we can estimate a gain rate K,/K, of two
transfer functions. We must obtain dead times of two
transfer functions to cancel dead times.

The result of the experiment is shown in Figure 12
under the experiment conditions that is listed in
Table 3. We estimate operational condition to
compensate the known disturbance. As a result, seeding
rate is 6.4 kilogram per hour because of keeping the
product crystal size about 454 micrometer under the
variation of the evaporation rate that varies from 80
to 100 kilogram per hour. The measured crystal size
after the variation is about 456 micrometer. The
desired crystal size matches the measured crystal size
on steady state. Therefore, we find that we can
estimate optimal operational condition for keeping the
desired crystal size using our neuro-model.

4. CONCLUSIONS

We control the product crystal size of the sodium
chloride crystallizer with a neuro-model that composed
of the threefold neural networks. Qur neuro-mode! is
made of asymmetrical distribution data, and can
estimate interval data and representative data of it
which is the feature of this model. We find that our
neuro-model is useful for a crystalling process.
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Table 1 Experiment condition for estimating
the product crystal size

Before After Model

Operational foctors

evaporation rate kg/h 0~ |0
seeg?ng r%t . £Tg/h

seed crys ag siz n ) b
suspension densjty

composition ratio of NaCl[% 2.6 b, 6
432 = 470 = 463

product crystal size [um]

Table 2 %ﬁpérimgnt condition for estimating
e seeding rate

Operational foctors Before After Model

i 1
stk HEM BRe Kb oo
seed crystal size m 9 9

dens |t "
Supension dent i o vt Bols  Kole

470 = 390 = 400

product crystal size [um]

Table 3 Experiment condition for estimating
t?e seedlnﬁ,rate nder the variation
of evaporation rate

Operational foctors Before After Model
i t -
S I I« R
seed crystal size m 0 0
suspens19n density - N .
composition ratio of NaCl[¥% 2.6 2.6

product crystal size [um] 454 = 456 = 454
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