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Abstract - Experiment on a lab-scale pH process is carried out
to evaluate the control performance of the neural linearizing
control scheme(NLCS) using a radial basis function(RBF)
network which was previously proposed by Kim and Park.
NLCS was developed to overcome the difficulties of the
conventional neural controllers which occur when they are
applied to chemical processes. Since NLCS is applicable for
the processes which are already controlled by a linear
controller and of which the past operating data are enough, we
first control the pH process with Pl controller. Using the
operating data with PI controller, the linear reference model is
determined by optimization. Then, a IMC controller replaces
the PI controller as a feedback controller. NLCS consists of
the IMC controller and a RBF network. After the learning of
the neural network is fully achieved, the dynamics of the
process combined with the neural network becomes linear and
close to that of the linear reference model and the control
performance of the linear control improves. During the
training, NLCS maintains the stability and the control
performance of the closed loop system. Experimental results
show that the NLCS performs better than PI controller and
IMC for both the servo and the regulator problems.

Introduction

Recently, the explosive development of microprocessors
;makes the sophisticated nonlinear control theories realizable
in chemical process control. Some techniques of nonlinear
model based control have been developed under the
assumption that the rigorous process models are initially
available and holds their validity as time goes on. For
simulation and lab-scale experimental studies, this assumption
can be valid even though enormous effort and time are spent.

However, this is not reasonable in the situation of industrial
plant. Firstly, since the chemical processcs are complexes of
many sub-unit processes, it is very costly or rather impossible
to identify all devices and units. Secondly, the identification
experiments of the real plant require much longer time than
those of the small processes do because the time constants of
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the real systems are frequently long. Therefore, even though
the nonlinear control techniques are successful in some ideal
situations, they encounters inevitable difficulties in the real
processes.

Neural networks, inspired from the human nervous system,
hold great promise for solving the current difficulties in
modeling and control areas. Some researchers proved that they
can be used as a universal function approximator[6]. Neural
networks also find the proper parameters, called as the
weights, by a learning process. Finally, originated from their
highly parallel distributed architecture, several benefits are
generated: easy implementation in VLSI hardware, robustness
against the imperfection of the input data, input data fusion
and etc.

Among the characteristics of neural networks, their learning
capability attracts the system engineer’s attentions. Just by
sequentially applying input and output data of the process, we
can construct the neural networks to produce the desired
outputs. This property of neural networks spurs the control
engineer to apply the neural networks in modeling and control
of chemical processes. Therefore, The past plentiful
engineering studies, stimulated by the above promise, have
been performed to apply the neural networks in chemical
process control.

However, when developing a control scheme using neural
networks for chemical processes, we must consider the special
characteristics of chemical plants. Before the chemical plants
are constructed, the real information of them is not known
accurately. Furthermore, after being constructed, they must be
operated in a relatively narrow range for safety and economic
reasons. Therefore, a control system must be developed under
the following restrictions:

1. It must handle the regulatory problem as well as the servo
one.

2. It must hold the control performance within the acceptable
range even during training of neural networks.

3. It must obtain the training data from the process without the
serious abnormal field tests.

The neural linearizing control scheme(NLCS) using a radial
basis function(RBF) network was originally proposed by Kim
and Park[12] in the spring meeting of KIChE conference to
overcome the difficulties of the conventional neural
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Figure 1. Schematic block diagram of NLCS.

controllers. NLCS showed superior control performance for
both the servo and the regulatory problem to that of PI
controller in the previous studies simulation.

This paper begins with a brief review of the NLCS and
shows the components and characteristics of the experimental
apparatus which is a laboratory-scale pH control unit. Finally,
we discuss the result of implementation of NLCS to a pH
control unit. The experimental results for these systems show
the superior control performances of NLCS for simple
acid/base systems in a laboratory setting and give its prospect
for the real industrial plants.

Summary of Neural Linearizing Control Scheme

NLCS can be applied to the nonlinear processes that are
already controiled by the stable linear controllers. In NLCS, a
RBF network, a kind of the neural networks, is trained to
linearize the relation between the output of the linear
controller which can control the process by itself and the
process output. Training the RBF network is to minimize the
difference between the outputs of the linear reference
model(LRM) and the process with the following objective
function, E:

1 . 2
E=—~(yV- 1
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where ¥ and y are the outputs of the LRM and the actual

process.

Without the additional test on the process, the LRM can be
determined by analyzing the past operation data. The detail
procedures for determining the LRM are explained in the
results, The training of the neural network is leaded by the pre-
defined LRM. Therefore, depending on how to design the
LRM, the target of the RBF network can be unique and
physically realizable. Since the objective function may vanish
to zero and so the weights of the RBF network are not changed
any more, the stable learning of the neural network is
guaranteed. Additionally, the RBF network is trained by the
modified Hierarchically Self-Organizing Learning(HSOL)
algorithm which is explained in our previous work{ [ 1, i2].

Figure 1 shows the schematic block diagram of NLCS. In
that figure, Gy and G, RBF and f(*) represent for the LRM,
the linear controller, the RBF network and the nonlinear
process respectively. Since the neural network is connected to
the existing linear controller in parallel, the control
performance gradually improves from that of the existing
linear controller to that of the proper nonlinear controller. If

Table 1. Parameters and steady-state values.

Variable "Description Value
Ca concentration of acidic feed 0.005 N
Ca concentration of basic feed 0.05N
Fa flow rate of acidic feed 85 ml/min
Fy flow rate of basic feed 8.5 mi/min
v volume of reactor 875 ml
pH pH 7
At sampling time 5 sec

Experimental apparatus

MO08N Acetic acid

0.0033N Acetic acid

0.05N Sodium Hydroxide
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Figure 2. Schematic diagram of the experimental apparatus.

the RBF network is fully trained, the dynamics of the boxed
area, which consists of the RBF network and the process,
becomes that of the LRM.

In spite of the high nonlinearity of chemical processes, most
industrial plants currently depend on simple linear controllers,
for example, PID controller. When the linear controllers are
applied to nonlinear systems, the linear controllers are
conservatively tuned to insure the stability against the fastest
dynamics in the whole operation range. Therefore, if the RBF
network linearizes the relation between the linear controller
output and the process output, the overall control performance
of the linear controller would be improved because the whole
dynamics of the process becomes uniform as the fastest
dynamics in the operating region. On the other hand, it seems
that the process dynamics becomes easy to control from the
viewpoint of the [inear controller by training of the RBF
network.

Experimental Apparatus

It is convenient to divide the whole process into four
sections for explaining the experimental apparatus: the process
feed(acidic) section, the titration feed(basic) section, the
reactor section and the control computer section. A schematic
diagram of the fab-scale experimental apparatus chosen is
shown in Figure 2. Additionally the parameters and the steady-
state values used in this experiment are given in Table 1.
Some values are not measured exactly or vary to some degree
in the normal operation.
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Table 2. Parameters used in each experimental step.

Step Description Value
sampling time At=10sec
PI control | proportional gain K¢ =5 ml/min
integral time Tc= 150 sec
Linear model gain Ku= 3 (ml/min)*
Reference | model time constant Tu=271 sec
Model model time delay Ty, = 10 sec
IMC filter time Tr= 10 sec
NLCS leaning rate n=3
initial width of RBF 0=0.1

l Pl control I.__)l Linear Mode! H IMC H NLCS ‘

Figure 3. Experimental procedure.

The process feed section consists of two feed tanks, a three-
way valve and a feed pump. The feed tanks are made of
polyethylene and produced by Nalge company. The capacity
of them is 20L. They contain 0.005N and 0.0033N CH;COOH
(acetic acid) respectively. The three-way valve provides the
way to select the feed from two feed tanks. In this way it was
possible to introduce disturbances in the concentration of the
feed streain in a manner as close to a step change as possible.
In this experiment, the concentration of the normal feed stream
is 0.005SN CH;COOH. The feed pump is a peristaltic
Masterflux pump produced by Cole-Parmer International. It is
used to maintain a constant flow rate of the acidic feed.

In the titration feed section, there are a feed tank and a
metering pump. The feed tank is the same type as the feed tank
in the process feed section but contains 0.05N NaOH(sodium
hydroxide). The base flow is controlled by a metering pump
which is also a peristaltic Masterflux pump and receives a
control signal from the computer. The RS232 is used in this
signal communication.

The reactor section consists of a polyethylene vessel and a
pH measuring system. When we imagine a regular triangle on
the cross sectional view of the vessel, the inlet tubes of the
acidic and the basic strecams and the pH probe located at
vertexes of the regular triangle. The inlet tubes go down to the
‘bottom of the vessel and the pH probe is located at the effluent
stream. The effluent stream tube is located at 10 cm high from
the bottom and so the liquid over this height overflows without
pumping. In this way, the volume of the vessel could be
maintained constant. A magnetic agitator is also used to ensure
proper mixing. Finally, the pH measuring system consists of a
pH probe and a pH meter. The pH probe is the general-
purpose pH electrode produced by Cole-Parmer International
and the pH meter is the model 720 produced by Orion
Research Incorporated.

In the control computer section, there are an IBM PC
386SX and a set of A/D and D/A converter made by Jietae
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Figure 4. Closed-loop response and the corresponding control
action of PI control (setpoint------- , process output
= and control action

Lee, Kyungpook Nat. Unv., Korea. The measuring signal from
the pH meter is 1-5V and the actuating signal to the metering
pump is 4-20 mA. An on-line data acquisition and control
algorithm is coded in MicroSoft C. .

Results

Figure 3 shows the experimental procedures and the
parameters of each step are summarized in Table 2. NLCS can
be implemented to the process which would be controlled by a
linear controller and of which the past operation data are
sufficient. We assume that this lab-scale pH process would be
controlled by a simple PI controller, and so we carry out a pre-
experiment to construct the control loop using PI controller.
The tuning parameters of the PI controller are roughly
determined by on-line tuning because it is difficult to clearly
find the optimum tuning parameters due to the severe process
nonlinearity. Figure 4 shows the process responses and the
corresponding control actions for various setpoint changes
using PI controller. The control performance for the setpoints
between 7 to 8 is acceptable but that between 6 and 7 is very
poor.

The above assumption is quite reasonable for industrial
situation in chemical industry. Then the following
determination of the LRM may be the first step in
implementation of NLCS to the industrial processes. Among
the historical data as shown in the historical data of PI control,
we choose the transient responses of the process with respect
to setpoint change from 7 to 8 to determine the LRM, because
they represent the fastest dynamics among the past data. After
choosing 2 sampling steps as the time delay, 3(ml/min)” as the
model gain and the first order autoregressive exogeneous
(ARX) model as the base structure of the LRM, we find the
model time constant by optimization. The results of this
optimization are shown in Figure 5 and the resulting LRM is

Fk+D=eyk)+3{1-e7" fu(k-2) )

Using this LRM, we construct and implement IMC to the
process. The reason for introducing IMC is that IMC can
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Figure 5. Outputs of the linear reference model after
optimization (setpoint.------ , PrOCESS OULPU t e |
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Figure 6. Closed-loop response and the corresponding control
action of IMC (setpoint ------ , Process QUtpUl e
‘and control action

cffectively handle the time delay and perfectly control the
process if the perfect model is given. Figure 6 shows the
control performance of the IMC with filter time constant of 10
sec. Since the control performance of IMC severely decreases
if the filter time constant is less than 10, we determine that as
10 sec. This phenomena result from the property of the IMC
which can not handle the physical bounds of the control
action. The control performance of the IMC is improved,
comparing with that of the PI controller. However, the
intrinsic limitation of the linear controller still appears in that
figure.

Based on these preparation, we start to train the RBF
network in the NLCS which consists of the IMC as a linear
feedback controller and a RBF network. The learning rate is
set to

n= 3

K

mn

The reason for this choice will be explained in the discussion
section. After about 10 hours or 20 iterations, the NLCS shows
the control performance for servo problem as shown in Figure
7 (a). Since the upper and the lower hard limits of the control
action are 0 and 18 respectively, that control performance is
optimum for this situation. Additionally, the control
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Figure 7. Closed-loop response(a) (setpoint ------ and process
output ) and the corresponding control action
(b) (total control action and IMC controf
actions ------- ) of NLCS control for the servo
problem.
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Figure 8. Closed-loop response of NLCS control for the
regulatory problem (IMC------- , PI and
NLCS )and the corresponding concentration
of acidic feed stream as the unmeasured disturbance

( )-

performance of the NLCS during the training changes from
that of the IMC to the final result. Also, there is no stability
problem during the training. Figure 7(b) shows the
corresponding control action. In that figure, the solid line
represents the total control action and the dotted line for the
IMC controller. Therefore the difference between the solid and
the dotted lines is the control action of the RBF network. This
figure shows the superior control performance in spite of the
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severe nonlinearity of the process.

Finally, we test the control performance of the NLCS for a
regulatory problem and compare it with the PI controller and
the IMC. Using the three-way valve, we make the step changes
in the concentration as an unmeasured disturbance. Figure 8
shows the results of this experiment. Among three controllers
NLCS shows the best control performance. For the regulatory
problem, NLCS takes longer time to reach a stead state. We
will also discuss this phenomenon in the discussion section.

Discussion

First we emphasize the importance of this experiment. There
have been many experimental researches on controlling lab-
scale pH processes. They have performed the experiments on
the simplified process model or ignored some properties of the
process. This may cause some problems when implementing
their algorithins to large plants, especially with the dynamics
of the pH probe and the pH meter. Although the general
dynamics of the pH probe is demonstrated in the vendor’s
manual, there are many factors to influence for modeling it:
the degree of mixing reactor, time-varying property of the pH
probe, the measuring position of the pH probe and etc.
However, NLCS does not use any process model for
instruments, devices and units, Therefore, although NLCS is
implemented to the lab-scale pH process, implementing the
NLCS to an industrial plant is not different from this
experiment. Additionally even though we try to maintain the
consistency of the operating condition during the training, for

- example, concentrations of both acidic and the basic feeds,
agitation speed, flow rate of the acidic feed, and etc., there
exist some variations in these variables. This experiment gives
the promise of successtul implementation of NLCS even under
the more difficult industrial situation.

As mentioned previously, we choose the learning rate, 1, as
Kwm. First, consider the unit of weights and 1. From the
equation of the output of the RBF network as

M
uy = Swelrd C))
il

where M, x and ¢ are the number of the RBFs, the input and
the center of the ith RBF respectively. We know that the
weight has the same unit to the control action. Now, from the
equation of updating the weights as

Aw; =1(§-y)etd )

we can see that M has the same unit to the inverse of the
process gain. Since Ky is set to a largest process gain in the
operation range and the linear controller is set to be
controllable for Ky, the 17 set as 1/Ky provides the stable
training.

Originally, the taining of the neural networks is the
optimization problem without constraints. However, there are
always physical constraints in the real processes. If these
constraints do not take into account of the training, the training
goes to the infeasible regions. In this work, we consider the
hard limits of the control action among various physical
constraints. We make sure that the training does not proceed

when the total control action exceeds the physical bounds of
the control action. This restriction is expressed as

If u™ + Auy <upor uy <u™ +Auy
then skip the current training.

where u", ur, and uy are the control action already applied, the
lower and the upper limits of the control action respectively.
Additionally Auy is the amount of updating the contrel action
and simply approximated as:

Auy =n(y-y) (6

Using this heuristics, the training of the RBF network does not
exceed the hard limits.

For the regulatory problem, NLCS takes longer time to
reach a steady state. The RBF network in NLCS does not
contain the integral control action to avoid the effect of the
unmeasured disturbance as mentioned in reference[ll, 12].
Therefore, the change of the steady state due to the
unmeasured disturbances is compensated only by the linear
controller in the NLCS. Since the effect of the unmeasured
disturbance reflected in the process output is relatively small
by the tight control of the NLCS, the time to reach the new
steady state with the NLCS is longer than that with the linear
controller alone.

Conclusions

In this work, the NLCS is implemented on a lab-scale pH
process to evaluate its performance and test its possibility.
Before introducing the NLCS to the process, we firstly
construct a rough PI controller by on-line tuning to evaluate
the process data. Using these data, the linear reference model
is calculated by optimization. Then, the NLCS is trained to
linearize the relation between the outputs of IMC and the
process while the IMC with the LRM mainly controls the
process. After the learning of the RBF network are fully
achieved, the NLCS shows better control performance than PI
controller and IMC for both the servo and the regulator control
performance. Additionally, during the training, NLCS
maintains the stability and the control performance.

The NLCS has been developed to overcome the difficulties
of the conventional neural controllers which are encountered
when they are applied to industrial processes. The NLCS does
not use any process model for instruments, devices and units in
this experiment. Therefore, although the NLCS has been
implemented to the lab-scale pH process, this experiment gives
the promise of successful implementation of the NLCS even
under the more difficult industrial conditions.
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