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ABSTRACT

We show an application of a genetic algorithm to.

control systems including neural networks. Genetic
algorithms are getting more popular nowadays because
of their simplicity and robustness. Genetic algorithms
arc global search techniques for optimization and many
other problems. A feed-forward neural network which
is widely used in control applications usually learns by
error back propagation algorithm(EBP). But, when
there exist certain constraints, EBP can not be applied.
We apply a modilied genetic aigorithm to such a case.
We show
nonlinear systems: single pole and double pole.

simulation examples of two cart-pole

1. INTRODUCTION

Control of a ccrtain system can be represented as
finding an appropriate input for the desired output
response. For that purpose, we generally need a model
describing the characteristics of the system, but it is
difficult to get such a model when the system is
time-varying. Adaptive
structure control have been

control and
studied to
overcome the uncertaintics of the model. However, it is

unknown or
variable

hard to apply them to an unknwon complicated system,
since both of them have some constraints.

Genetic  algorithms(GA’s) are used in  various
control system problems nowadays. A GA is a scarch
method based on the natural selection and genctics
while neural networks and fuzzy theory originate from
human information. processing and inference procedures
[1){2]. The current main search methods assume the
smooth search space and the existence of its
derivative, and most of them are using the gradient
following technique.

GA is different {rom conventional optimization

methods in several ways. GA is a parallel and global

search that searches multiple points so it is more likely
to get the global solution. It makes no assumption on
‘the search space, so it is simple and can be applied to
‘various problems. In control area, it has been used in
‘identification, adaptation of fuzzy membership functions
.and neural network controller[3]{41[5]. However, GA is
‘inherently slow and not good at fine tuning of the
solutions,

On the other hand,
advantages of

neural networks have

learning and various input-output
mapping capability. There are many paradigms for
and feed-forward

frequently used for complex systems modeling and

neural networks, nctworks are
control[6](7}. Back propagation(BP) learning algorithm
for feed forward networks has the problem of local
minima and parameter sensitivity{8]. GA is a suitable
‘1carning algorithm for neural networks, since it does
not have those problems. .However, as menthiond
carlier, GA is slow and poor at fine tuning. Therefore,
GA-BP, a hybrid GA merged with BP was
proposed[9), but was not desirable due to the
constraint imposed by BP.

In this paper, we propose a modified GA which is
designed to improve the speed of convergence and the
hill-climbing proposed
algorithm to optimization of a neural network. In

capability. We apply the

section 2, general feature of GA is described. In
section 3, a modified GA is proposed. In section 4,
cart-pole problems arc described, and simulation results

are included in section 5.

2. GENETIC ALGORITHMS
GA is a secarch method based on the natural
sclection and genctics. The central theme of the
research on GA’s has been the robustness, the balance
between the efficiency and the efficacy necessary for
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survival in many different environments. GA is
computationally simple yet powerful and it is not
limited by assumptions about the search space.

If we want more humanlike optimization tools, the
most important goal of optimization should he
improvement. Although GA can not guarantee that the
solution will converge to the optimum, it tries to [ind
the optimum, that is, it works for the improvement.
GA’s are diffrent from normal search procedures in
four ways.

1. GA's work with a coding of the parameter set.

2. GA's search [rom a population of points.

3. GA's use objective function information, not
derivatives or other auxiliary knowledge.

4. GA's use probabilistic transition rules.

A simple GA is really easy to use, yet powerful.
GA searches the solution by transforming the
individuals in a population using genetic operators and
determining the population for’ the next generation. In a
simple GA, following three basic genetic operators are
used.

Reproduction . Reproduction probability is proportional
to the fitness value(objective function value) of a
string(individual).

Crossover . Crossover needs mating of two individuals.
The information of two randomly selected individuals
is partly interchanged according to the crossover site.
Crossover is applied to take valuable information from
the parents, and it is applied with the crossover
probability. ’

Mutation . This operator insures against a bit loss and
can be a source of new bits. Since mutation is a
random walk through the string space, it must be used
sparingly. ’ '

There are three differences of GA from random
search. Tirst, the existence of the direction of search
cdue to the selection probability. Second, the fact that
the better strings make more offsprings and finally,
being likely to be improved in average fitness after
generations.

3. A MODIFIED GENETIC ALGORITHM

GA is a very uselul algorithm because of its
versatility. However, it has three major limitations.
First, the performance is degraded as the problem size
grows. Secondly, premature convergence occurs when
GA can not find the optimal solution due to loss of
some important characters(genes) in strings. The
reason is that GA heavily depends on crossover and
the mutation probability is generally too small to move
the search to other space. Lastly, GA lacks
hill-climbing capability. The reason is aiso that the
mutation probability is much smaller than the

crossover probability.

To prevent the premature convergence and to
improve hill-climbing capability, we suggest a modified
mutation operator as following.

The modified mutation probability, pm is given as

pmo, 1l the fittest is the same for

. N enerations
pm(i+]) = o Ayt £€ (n
pn(D), i pelD) < potow
pm()*k,  other case
where i is the generation number, pmase and k is a

positive constant less than 1.

Thus, the adaptive mutation probability can be
enlarged whenever needed. The enlarged mutation
probability increases the diversity of the population so
it prevents the population from premature convergence.
When the mutation probability is its lowest value Pt
it operates as a normal mutation operator.

In this paper, we apply GA to optimize a neural
network. As mentioned carlier, GA is suitable for a
learning method of neural networks when conventional
method can not work. To apply GA to neural
networks, we should be able to code the information of
a neural network. Since we only deal with the
optimization of weights here, all the information of a
neural network can be represented as an array of
weight values. Coding ‘might be done by an array of
the weights’ real values. Because binary coding needs
too many bits for a string, neural network
representation in this paper uses the string which
consists of integers with constant bound, Since the
true weight values are real, we scale the integer to get
a real value. Mutation is defined as a change in the
value of an integer.

4. CART-POLE PROBLEMS

Pole balancing problem is difficult since the system
is nonlinear. The problem becomes harder when we do
not have any a priori information about the cart-pole
system. Two cases of this class of problems are
considered in this paper. The first is the balancing of
a pole on a cart(referred to as the single pole problem)
and the second is the balancing of two poles on a
cart(referred to  as the double pole problem). The
double pole problem is more difficult than the single
pole problem. Fig. 1 and Tig. 2 show the single pole
and the double pole repectively.

The equations of motions for the single pole
problem can be found in many papers. Those are

§ - —M+mg sin® - cos8fu + ml 8 sin6] @
(4/3) (M+m) [ - mi(cosB)?
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- u+ mill stinﬂ - 66058] _
x = M+m ®

where M is the mass of the cart and m is the mass
of the pole. ! is the half of the pole length.

The equations of motions for the double pole
system can be derived {from dynamic equilibrium
cquations. The equations are given as

x = (F+ '%[mlsinﬂl(llé? - g cosB))
- mesin®; (1202 - g cos8)]} /

[M+ m(] - —S'coszﬂl) + ma(l - ‘lcoszez)]

4 4
(1)
01 = [ (gsindy - cosd)} /1) (5)
b, = [ (gsin®y + ¥cosb)] / I (6)
where the f(ollowing notation is used.
I Half length of long pole
Iz Half length of short pole
my Mass of long pole
my Mass of short pole
x Cart position
x Cart velocity
6, Angle of long pole
0 Angle of short pole
G Angular velocity of long pole
g, Angular velocity of short pole

The control objective is to balance the system such

that the poles do not fall beyond a predefined vertical »

angle(15°) and cart remains within the bounds of the
horizontal track( £2.4 meters from the center). It is
well known for the double pole system that the poles
must be of different length in order to be balanced. In
this problem, the size of the region of controllability is
determined by the ratio of the natural frequencies of
the poles, i.e., the ratio of the lengths of the poles.

5. SIMULATION RESULTS

The equations of motions for both the single pole
and the double pole problems are simulated using a
Euler integration method with a step size of 0.0ls. A
population of neural networks is randomly initialized
with each sct of weights and biases. The learning
process starts by providing cach of the npeural
networks in the initial population with the initial state
of the cart-pole system to be controlled and the

network’s output response is applied as a force to the
simulated cart-pole system. A [ced-forward neural
network is fed with the four states or six states of the
single pole system or the double pole system
respectively. The simulation is done with M = 1.0 kg,
m=my=01 kg, my=001 kg, 1=01=05 m and
l2 =005 m. Fig. 3 shows the overall system block

diagram.

Feed forward neural networks with four and six
nodes in the input layer(corresponding to the states),
ten nodes in the hidden layer and a single node in the
output layer is used. The bias nodes in the input and
hidden layer are set to 1.0. The activation of the nodes
is given by

fAx) = -1+2/(1 +e™) )]

The output of the ncural network is amplified by a
factor of 10 before it is applied to the simulated
cart-pole system. The output - of the neural network
continuously varies between -10N and +10N, as
opposed to the bang-bang approach used in other
studies.

The coding for the weights and biases of the neural
network is a vector of integers between -100 and 100.
The real values of the weights and biases are betwecen
~10 and 10 so the resolution is 0.1. Because of the
integer representation, the problem becomes a kind of
combinatorial optimization. - So, a conventional method
like EBP can not be applied. A population of 100
networks was used. GA parameters are as following.
Pe =08, pw = 05, Pniow = 0.03, Neesee = 5 and k = 09.

The fitness measure for a network is the simulated
time until failure occurs. No other information was
used for GA. GA was able to discover a good control
strategy which was successful for 100,000 time steps
in about 200 and about 650 generations for the
single-pole and double-pole respectively.

Fig. 4 shows the result of the single pole system.
Initial condition for B is 0.1 rad and all other states
are zeros. Fig. 5 shows the result of the double pole
system. 0, is initially 2.5° and other states are zeros.

In order to recover from this starting position, a force
must be applied such that the longer pole tilts further
right until the faster swinging shorther pole is tilted to
the right more than the longer one, which can be
happen because the angular acceleration is inversely
proportional to the length of the pole. Once the shorter
pole has tilted sufficicntly more than the longer pole,
an opposite force is applied and both the poles are
swung to the vertical position together.
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6. CONCLUSION

We have proposed a modified GA which was designed
to prevent the premature convergence and to speed up
the convergence to the solution. The results on the
two systems studied here indicate that GA can be
used to discover ncural networks for controlling
nonlinear unstable plants using only failure information
and no a priori knowledge. The control problem
considered in this paper can not be solved by EBP
because there is a constraint in weight values and no
error  signal is  available. Further work includes
simultaneous search for the weights and the
architecture of a neural network.
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