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Abstract-In this paper we show the perforinances of neu-
ral Chandrasekhar filtering whicli is a special case for the
new method ol neural filtering using the artificial neu-
ral network systems developed recently for the filtering
probems of linear and nonlinear, stationary and nonsta-
tionary stochastic signals. The neurofilter developed has
either the finite impulse response(FIR) structure or the
infinite impulse response(IIR) structure. The neurofilter
differs from the conventional linear digital FIR and IIR fil-
ters because the artificial neural network system used in
the newrofilter has nonlinear structure due to the sigmoid
function.

Numerical studies for the estimation of a second or-
der Butterworth process are performed by changing the
structures of the neurofilter in order to evaluate the per-
formance indices under the changes of the output noises or
disturbances Iu the numerical studies both Chandrasekbar
filtering esitimates and true signals are used as the train-
ing signals for the neurofilter. The results obtained from
the studies verified the capabilities which are essentially
necessary for on-line [iltering of various stochastic signals.

Keywords-Neural filtering, Stochastic signals, FIR and
HR structures.

INTRODUCTION

The methods of neural filtering using the artificial neu-
ral network systems(denoted as ANNSs) for general stochas-
tic signal processes provide us effective tools for estimat-
ing the signals whose characteristics change unexpectedly
or suddenly by the disturbances and defaults, etc.. Re-
cently a few studies on developing the neural filtering
methods have been done in the ficlds of estimation prob-
lems[l]. However, only a conceptual idea how to construct
the structures for the neural filtering based on the digital
Chandrasehkar filtering formulas has been presented and
the numerical studies have not been shown in the reler-
euce [1].

Recently a new method of neural liltering using the
ANNSs has been proposed for the filtering probems of
gencral stochastic signals[2-4]. The neurofilter developed

has either the FIR structure or the HR structure, differs
from the conventional linear digital FIR and IR filters
because the ANNS which constructs the neurofilter has
nonlinear structure due to the sigmoid lunction, and uses
the back propergation method in order to minimize the er-
rors between the outputs of the neurofilter{or the ANNS)
and the training signals.

In this paper, we show the performances of the neu-
ral Chandrasekhar fiitcring which uses the Chandrasekhar
filtering estimates as the training signals for the ANNSs.
Both the estimates of the signals obtained [rom the Chan-
drasekhar filter[5-9] and the true signals, which are as-
sumed to be obtained in ofl-line fashion, ave used as the
training signals v the neurofilter. The true signals can
be obtained or can be known [or some cases in practical
applications.

Numerical results for the estimation of the second or-
der Butterworth process are presented by changing the
structures of the neurofilter in order to evaluate the per-
formance indices under the changes of the owtput noises
or disturbances. The results obtained verified the capa-
bilities which are essenlially necessary for on-line filtering
of various stochastic signals.

2. NEUROFILTERS

For the reason of space, we will show only the T1R. struc-
ture of the neurofilter in the followings because the FIR
structure is considered as a special case of the 1R struc-
ture. The 1R structure is illustrated in IMig.l. In this
figure, the inputs to the neurons in the input layer are
both the sequence of the (m+1) observed signals given by
the seb {, ..., yi—m} and the sequence of the n estimated
value of the signals given by the sel {3y, ...,%,_,}. The
output [rom the oulput layer is the fillering estimate &,.
ITere t denotes the present discrete time, and m and n
denote Lhe orders of the observed data and the filtering
eslimate, respectively.

In order to facilitate the understanding of the nerofil-
ter with the IR structure, we note that the fundamental
equation of the lincar digital TR filter is specified by

m

Ty = Z wiye_i + Z bjdty_;, (1)
=

=0

~ 742 =



where a; and b; are the coeflicients which affect the filter-
ing cffects. Namely, the filtering estimate produced by the
above equation is a linear combination of both the past
measurement dala and the past filtering estimates cal-
culated. Therclore, the linear digital filters do not have
the adaptive characteristics for sudden disturbances and
unexpected faults in the system of signal generations.

In the meanwhile, the fundamental equation of the neu-
rofiller with the IR structure is represented by

j’l = ft(i’/h vy Yty :i‘l—-ly ey 5'1_"), (2)

where [y is a special nonlinear transformation with adap-
tive characteristics due to the noulinearlities of the sig-
moid function in the ANNS. In the next section, we will
show the methods how to train the neurofilter with the
HR structure.

3. TRAINING OF NEUROFILTERS

In order to train the neurofilter presented in Scction
2, the back propergalion method is used for minimizing
the errors between the outputs from the neurofilter and
the lraining signals. Two signals are employed as the
training signals. One is the filtering estimates obtained by
calculating the Chandrasekhar filter {5-9] and the other is
the true signals which are obtained by assuining the true
signals to be measured.

The blockdiagrams of the training schemes are shown
in I"ig.2a-b where Fiq.2a shows usual lraining approach
based on the fillering estimates and Fig.2b shows unusual
training approach based on the true signals, but often
used. In the figures, u(t) is the zero-mean white Gaus-
sian input noise with covarince matrix Q(> 0), z(1) is
the slochastic signal Lo be estimated, v(!) is the zero-
mean white Gaussian output noise with covariance matrix
R{> 0), and y(1) is observation specified by

z(t) = Fa(t) + Gu(t),z(0) = 2o, (3)
y(t) = 2(t) + v(t), 2(t) = Ha(t), (4)

where ¢ 1s the zero-mean white Gaussian initial state
noise wilh covariance matrix Ky, and the noises u, v, and
o are uncorrelated each other. Reler to [5-9] for the
Chandrasekhar filtering formuras.

4. NUMERICAL RESULTS

As a example for the numerical simulation studies in
order Lo investigate the performances of the filtering ef-
fects of the neurofilter proposed, we consider the second
order Butterworth signal process realized by the analog
RC electric circuit illustrated in Fig. 3.

Lel the voltages across the capacitors C; and C, be
the states 2y and wr,, respectively, in Fig.3. lence, we
see that a=col{w1,2;). We used the following values for
the parametrs iu the circuit in oredr for the system to be
stable.

Ri=1,Ry=C=Cy=2

Using the above values [lor the paramelers and the Lya-
punov equation, we can evaluate F, G, I, and Ky as fol-

lows(9).
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Using the parameters specified above, the numerical
studies of the neurofilter are performed on a NIEC 9801
microconuter by chauging both the structure of the nen-
rofilter, viz., m and n in £q.(2), and the measurement
noise variance expressed by R. The results shown in this
section used the structure and the variance of the input
noise sepcified by m = n = 1 and Q=1, respectively, and
the ANNS with 3 neurons in the inpul layer, L5 neurons
in the hidden layer, and 1 neuron in the outpud layer.

In order to evaluate the performance indexes of the neu-
rofilter, we use Lthe mean square crrors specified by

,I-l:[() 1]

o
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where || || denotes the norm and, @ and & are equal Lo z
ans 2, respectively, for our example. IFig.4 shows the mean
square errors ol both the neurofilter(denoled as the white
circule or Neuro) and the Chandrasckar filter(denoted as
the black circule or Filter) when the Chandrasekhar fil-
tering estimates are used as the training signals and R is
changed. Similarly, Fig.5 shows the same resnlts as that
in Fig.4 when the true signals are used as the training
signals. We see from Figs. 4 and 5 that if we use the true
signals as the traing signals for the case of large oulput
noise variance the performance of the neurolilter reduces
compared with that of the Chaundrasekhar filter. This re-
sult is quite reasonable.

We performed other numerical calculations by changing
the structure of the neurofilter and obtained intersting
results. -However, they are not given in Lhis paper for the
reason of space and will appear in a conuning paper. The
numerical results obtained verified the capability which
are essentially necessary for on-line [iltering ol the general
stochastic signals.

5. CONCLUSIONS

In this paper we showed the performances of the neu-
ral Chandrasekhar filtering which is a special case for the
new method of neural filtering using the ANNSs devel-
oped recently[2-4] for the filtering probems of linear and
nonhincar, stationary and nonstationary stochastic sig-
nals. The neurofilter developed has either the finite im-
pulse response(FIR) structure or the infinite impulse re-
sponse(1IR) structure. Our attentions are mainly focused
on the performance index of the neurofilter with the IR
structure.

Numerical studies for the fillering of the sccond or-
der Butterworth process are perlormed in order to eval-
uate the performance indices of the neurofilter under the
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changes of the output noises or disturbances. The re-
sults obtained from the studies verified the capabilities
which are essentially necessary for on-line filtering of var-
ious stochastic signals. However, in this study, the nu-
merical experiments for examples of the nonlinear filter-
ing problems are not performed and will be presented in
future studies. '
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