'94 KACC (1994.10.17 ~ 20)
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1 Introduction

Ussing's flux ratio theorem (1978) reflects a reciprocal relationship behavior between the unidirectional fluxes in
asymmetric steady diffusion-convection in a membrane slab. This surprising result has led to many subsequent
studies in a wide range of applications, in particular involving linear models of time dependent problems
in biology and physiology. Ussing's theorem and its extensions are inherently linear in character. It is of
considerable interest to ask to what extent these results apply, if at all, in situations involving, for example,
nonlinear reaction.

A physiologically interesting situation has been considered by Weisiger et al. (1989, 1991, 1992) and by
McNabb et al. (1990,1991) who studied the role of albumin in the transport of ligands across aqueous diffusion
barriers in a liver membrane slab. The results are that there exist reciprocal relationships between unidirectional
fluxes in the steady state, although albumin is chemically interacting in a nonlinear way of the diffusion processes.
However, the results do not hold in general at early times. Since this type of study first started, it has been
speculated about when and how the Ussing’s flux ratio theorem fails in a general diffusion-convection-reaction
system.

In this paper we discuss the validity of Ussing-type theorems in time-dependent situations, and consider the
limiting time behavior of a general nonlinear diffusion system with interaction.

2 Transport equations for a diffusion-reaction system

The model assumed here is of one-dimensional diffusion of ligand across two unstirred layers. The first (0 <
¢ < §;) is an aqueous solution of ingredients at concentration u(z,t), b(z,t) and a(z,t) of unbound ligand,
ligand-protein bound complex and protein(albumin). The slab is bounded by an agueous equilibrium solution
at concentrations ug, bo and ag, respectively, of these ingredients at > 6, and a lipid-water interface at = = 0.
The second (—8; < = < 0) is a solution of ligand in lipid(decane) at concentration w(z,t) and bounded by a
well stirred decane solution in the region at z < —6; and the decane-water interface at z = —§;. These decane
solutions are assumed to be insoluble for protein and ligand-protein complex. The decane-water interface at
z = 0 is also assumed to have permeability partition ratio aw(0_,t) = u(04,1) of ligand between decane layer
and aqueous layer for the absence of protein, where a is a positive constant.

The concentrations u(z,t),b(z,t) and a(z,t) in the unstirred and well stirred aqueous layers z > 0 are
governed by following mass conservation equations of diffusion-reaction

w(z, ) ~ Dyutz.(z,t) = -—p(z,1)
(2.1) b(z,t) — Dybea(z,t) =  p(z,1) (z>0, t>0).
a(z,t) — Daage(z,t) = —p(z,t)
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where p(z,t) is a general chemical interaction term for the net rate of ligand-protein complex production per

unit time in unit volume, given by

(2.2)

p(=,t) = kyu(z, t)a(z,t) — kab(z,t)

(=

>0,

where k; and k; are association and disassociation constants respectively.

The concentrations in the unstirred and well stirred decane layers © < 0 are governed by

(2.3)

The flux continuity and permeability conditions are

(2.4) aw(0_,t) = u(04,t)
(2.5) Dywo(0-,t) = Dyua(04,
(2‘6) bz(0+,t) = a=(0+1t)

The initial conditions of interest for

(2.7)

of ligands out of the unstirred decane layer at z =
—&; at time t. Denote by u*(z,t), b*(z,1), a*(z,1),
w*(z,1) and j*(z,t) which the quantities correspond-
ing to u(z,t), b(=,t), a(=,t) and j(z,1) for a second
complementary solution which satisfies to the same
initial condition as before but boundary conditions
u*(61,8) = ¥*(6;,t) = 0 and a*(81,t) = bo + ao in
the well-stirred layer = > 6, and w*(—482,t) = ug
in the second well-stirred decane layer ¢ < §;. This
generates a flux

(2.8)

through = = §; at time . The flux ratio of interest

. _ _j(_62:t)
is R(t) = T

3°(81,t) = —Dyuz(81,t) — Dpb(61,1)

3 Initial behavior of flux ratio

- wy(z,t) — Dy wa(z,t) =0

(z <0,

t > 0).

t>0).

(where a is a positive constant.)

1)
=0

j(_621t) = “waz(_(s?;t)

the study of Weisiger et cl (1989) are w(z,0) = 0 for ~6; < z < 0,
u(z, 0) = b(z, 0) = 0 and a(z,0) = by + ao for 0 < z < §;. This generates a flux

zg)ns:lli;;gr Unstirred Unstirred Well sttired
or Sink decane layer aqueous layer ] aqueous layer
% o ° Q 0 Q O\Ligand
S ° ) ° Albuni
o o o Q o O¢4 min
o oflo o |° o
0 o o O o D 0
o 0| O (o) o 0
o o o o © O )
0o o| o 0 O> 00
o} (o} (¢} (e}
0 0© © o X
-3, 0 ,

Figure 1. A model or a lipid-water interface with albumin

and ligands.

To investigate the time-dependent behavior, it is a good idea to make the transport equations (2.1) — (2.8)

dimensionless by introducing

62
t:—l—‘r 12:610'
D,
(31) u(z,t) = uelU(o,7), b(z,t) =
a(z,t) = agA(o,T1), aw(z,t) =
so that
Uo7}y — Uso(o,7) = —eR(o, 7)
B:(o,7) — O3Byo(o,7) =  AzeR(o,71)
(3.2) Ar(o,1) — ODaAse(0,7) = -=)d3zeR{o,7)
R(o,1) = U(0o,7)A(0,7) — vB(0o,7)"
We(oy1) — ODaWoo(oy7) = 0
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Table 1: Variables and functions.

T
4

61, &2
P
v,b,a,d

U,B,AW
i’
J,J*

. DulDleerW

ky

k2

€

v

D2, Dy, By
A2, A3, A

-Dimensionless time for real time ¢

-Dimensionless space variable & = z§ for real space =

-Length scales for unstirred solution layer and unstirred decane layer

-Dimensionless position: §3.= §451

-Concentratioin for unbound ligand, bound ligand-protein, free protein in the solution and unbound
ligand in the decane respectively

-Dimensionless concentrations: u = u®U, b= b°B, a = a® 4, w = cu®W

-Tracer fluxes

-Dimensionless tracer fluxes

-Diffusion constants for unbound ligand, bound ligand-protein and unbound protein in the solution
and unbound ligand in the decanc respectively

-Binding constant for ligand - protein

-Unbinding constant for ligand-protein complex

-Dimensional binding constant: Dye = 63’:; ao

-Dimensjonless unbounding constant

-Dimensionless diffusion constans Dy = A3D,, Dg = A3 Dy, Dy = Ay¢Dy respectively
-Concentration ratio at equilibrium state Ayu® = 8%, A3u® = a%, Aqu® = d° respectively

where the definitions of the dimensonless parameters €, g, Az, Az, Mg, Oz, D3, A4 are given in Table 1. The
initial conditions become

(3.3) U(0,0) = B(0,0) =0, A(0,0)=1 (o>0)
’ W(s,0)=0 (0 <0)
The boundary conditions in this dimensionless form are,
U(i,ry=B(1,7)= A(1, 1) =1
(3.4) U@©,7)=W(0,7),  AW,(0,7)=TU,(0,7), B,(0,7)=4,(0,7)=0  (r>0)
S(—ba,7)=0, .
This generates the nondimensional flux at o = —6,4
AV
(3.5) J(—‘ﬁdn T) = _A_WU(_J"I T)l (T > O)‘
4

The second complementary solution corresponds to the same initial conditions, but with the boundary condi-
tions,

U*(1,7)=B"(1,7) =0, A'(1,1)=1
W*(-64,7)=1
This generates the nondimensional flux at o =1
. » JAY! .
(3.7) I,y =-U;(Q,7)- TBu(llT)) (r>0).
2
When, the time 7 is very small, U(o, 7) differs from 1 significantly only in small neighborhood near ¢ = 1.
Similarly, W*{o, 7) differs from 1 in small neighborhood near ¢ = —§4. Suppose that a typical interaction time
. . . R L 1 . . . ;
—— s larger compared with a typical diffusion time —2- for unbound ligand, then, the nondimensional variavie
1%0 uw
- (S%klao

(3.8)

1
D, <<

and far scaled time 7 = O(1), and interacting effects will be small compared with diffusion effects. Then we
expand U(o, 1), B(o, 1), A0, 7) W(o, r) as asymptotic series in € so that

U,r) = UO + ) 4 200 4+

(3.9) B(o,r) = B©® 4+ B 4 &£B®) 4
' Alo,r) = AQ 4 A 4 @A 4
' We,r) = wO@ + w® + Sw® 4+ |
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and we find that the zeroth order terms of equations (3.2) have no chemical reaction term and are linear,

T(O)(a,'r) - U‘S?,)(a','r) =0

BOo,7) - £3BQ(e,r) = 0
(3.10) '

A(,o)(or,-r) - AgAS,og)(U,T) = 0

W-,(-o)(ﬂ',’r) - A.;Wé?(o, T) = 0

If U(o, s), B(o, s) and W(o, s) denote the Laplace transforms of these dependent variables,

U(o,s) = /°° e('")U(a, y)dy, 79_(0, s) = /°° e(_”)B(a, y)dy,
(3.11) o . °
W(o,s) :/ e(‘")W(a, y)dy

0

the zeroth order equations (3.10) give

(3.12) ST )(0' s) — U (0' s) =0, 35(0)(17, s)— Az_B_f,o,,)(a', 5)=10
3.12
T )(0', s) — AgW( )(a s)=0.

Designate by U(a, 7), B(o, 7), W (o, T) the solutions of the problem (3.2), (3.4) satisfying the zero initial condition
(3.3) and by U*(a, 1), B*(0, ), A*(a, 7) the solutions of the same problem but with (3.6) boundary condition.
Then, trivially

o_
0=F= / ! (_“’) WO _ O Yo
ba

(3.13)
+/ {(U(O) U'(O) sU(O)U'(O))-i— ( (0) ‘(0) (O)F'(O))}da
04+

It is noted that B(®) and B*(®) are zero, because the initial condition for B(o, ) for 0 < = < 1 is zero, and there
exists no chemical interaction in the zero-th order to create bound complex On the other hand, integration by
parts leads from equation (3.13) into

* —(0) oo 0- 0- Far\ V)l 7*
e [Tl [ WO s
-5
(3.14) )

_ [ﬁ(o)j.(o) (0)—*(0) / {U(O)U'(O) (O)U*(O)}dd
Oy

and both integrals vanish. Therefore,

= W07 (00) + W8T (=82) + T (0 )7 O 0_) - T =87V (=52)
(3.15)
7070 + 7007V 04) + TOWT 1) - T 00T 0)

From (3.4) (3.6), now the nondimensional boundary conditions at o = 0 give

(3.16) W(Z)(o_,s) = U(ol(0+,3), W"(Z)(O—,s) = T"0y,s),
7%, ) = T%04,5, T = 70,9,

and so . . \ .

(3.17) B =_7¢ )( 5)W «( )( 84) — 7' )(1)7*( )(1) —o.
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Thus we obtain

(3.18) ~J(°)(—6¢,'r) - U(°)(1,‘r)

JO) (1, 1) T WO (~b4,7)

In terms of the original variables, this result is

1 —jO(=63,t)  ulO(6;,1)
ol j‘(o)(61,t) _‘w‘(o)(—ég,t)’

(3.19)

where « is the permeability constant.
We see that the flux ratio is independent of time in the early stages, despite the nonlinear chemical interacts.

4 Infinite time analysis

Numerical results suggests that in this nonlinear system the Ussing's flux ratio theorem fails for larger times.
To_avoid investigating time dependent behavior of the nonlinear system with all its difficulties, we consider
instead infinite time steady state analysis.

The flux of tracers are measured of u(z, t) b(=z, t) and w(z,t). Equation of ligands and ligand-protein complex
(2.1)(2.2)(2.3) can be rewritten as follows,

(4.1) (we(z,t) + bi(z, 1)) — (Dytize(z,t) + Dpbez(z,t)) = 0 (z>0, t>0)
' Wi(z,t) — Dywea(z,t) =0 (z<0, t>0).
Now cale the independent variables as
1 .
(4.2) t= klﬂoT z =60

with the same nondimensional variables U(o, 7), B(o, ) and W{o, T) as before. Then, we obtain

€ (U,(a, )+ AilB,(d, 1')) — (U,,(a, T)+ ?—:B,,(a, r)) =0 (e>0, 7>0)
(4.3) .
A—ZW.,(a',-r)— %W,,(a,r)) =0 (>0, 7>0),

with ¢ as before. Then, we can consider the limit of large times again regarding ¢ as a small variable. and
expanding U(c,7), B(o, 7) and W(a, 7) as asymptotic series in ¢, the zeroth order term of the equations (4.3)
are time -independent,

v )+ 2B)(0)=0  (¢>0)
(4.4)

—4wmd=o (o < 0)
Az

On the other hand, the dimensionless fluxes of interests are

(4.5) I-ba) = =D Waa(-6)

(4.6) 7°(1) ( L)+ 52 Dy

=B (1))

which correspond to the boundary conditions (3.4) and (3.6) respectively. Then these fluxes at infinite time
can be obtained by a simple calculation involving linear functions of z,

_UO@) + §2(B96) - BO(0))

a7 705
(4.7) (52 —
Lapylo)(_ 82 g(o)(p
(4.8) ro@y = 2wVCET 5500
81442
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The ratio of nondimensional fluxes at the infinite time is therefore,

4 JO(=8)  UO(1)+ £2(BO(1) — B)(0))
9 TO(1) T Zaw)(=gy) + 54BO)(0)

In terms of the original variables, the result is

(4 ‘10) 1 jO(=8) _  Dyul®(6;) + Dyb0(8,) — Dyb)(0)
' o o? 7O5) Dy w®(=&) + D, BO(0) '

which is quite different from the flux ratio at the early stage.

5 Discussion v e

As a result of this limiting time analysis, we see that the
flux ratios at the early time stage and infinite time stage
are in general different. There is no parameter available
which may be adjusted to match the flux ratios between !

the limiting times, which are therefore different except \
in special circumstances. ( i.e. that chemical reactions
in the unstirred solution is fast enough to diffuse like
in an equilibrium state, or that there are no chemical o5
reaction in the system.) Thus the conclusion is that a
general nonlinear diffusion reaction model with chemical
interaction fails Ussing’s flux ratio theorem for larger

times, while a constant flux ratio indicates the reciprocal ¢ 5 Ty Ts
. . . . Time T

r.elatu?n.shxp behé}‘“or in the early stages, before the non- Figure 2. Flux ratio R(t) for a nonlinear diffusion reaction

linearities come into play. system with chemical interaction.

References

(1] McNabb, A., Bass, L. & Suzuki, M., (to appear) Ussing flux ratio theorem for albumin enhanced fatty acid
fluxes across a lipid water interface.

(2] McNabb, A. & Bass, L. (1991) A diffusion-reaction model for the celluar uptake of protein-bound ligans.
SIAM J. Appl. Math. Vol.51 No. 1, pp124-149.

{3] McNabb, A. & Bass, L. (1990) Flux Theorems for Linear Multicomponent Diffusion. IMA J. of Applied
Maths. 44, 155-161.

[4] Weisiger, R. A., Pond, S. M. & Bass, L. (1992) Uptake of plamitate by hepatocyte suspensions: facilitation
by albumin? Am. J. Physiol. 262, G883-G894.

[6] Weisiger, R. A., Pond, 5. M. & Bass, L. (1991) Hepatic uptake of protein-bound ligands: extended sinusoidal
perfusion model. Am. J. Physiol. 261, G872-G884.

{6] Weisiger, R. A., Pond, S. M. & Bass, L. (1989) Albumin enhances unidirectional fluxes of fatty acid across
a lipid-water interface: theory and experiments. Am. J. Physiol. 257, G904-G916.

{7] Ussing, H. H. (1978) Interpretation of tracer fluxes. In: Membrane Transport in Biology (Giebisch, G.,
Tosteson, D. C. & Ussing, H. H. Eds.), Vol. 1, pp.115-40, New York: Springer.

— 752 —



