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Complicated dynamical behavior can occur in model refcrence adaptive control systems when
two external sinusoidal signals are introduced although the plant and reference model are stable
linear first order systems. The phase portrait plot and the power spectral analysis indicate chaotic
behavior. In the system treated, a positive Lyapunov exponent and non-integer dimension clearly

manifest chaotic nature of the systcm.

INTRODUCTION

In process industries, many chemical process systems
possess complex nonlinear features, such as multiple
steady states, simple bifurcation, Hopf bifurcation, torus
bifurcation, period doubling bifurcation and nonlinear
oscillation. Even complicated features such as chaos can
occur.

In adaptive control systems, it has been shown that even
though the controlled plant is completely linear, the overall
system becomes nonlinear if adaptive controller is
implemented. This can be caused by adaptive control law
algorithms such as gradient algorithms or least-square
adaptive algorithms. Therefore it is possible to result in
nonlinear phenomena in the systems. This fact has been
shown by a few previous workers: Rubio et al.(1985), for
example, showed that a chaotic motion can occur when a
simple adaptive controller is implemented to a nonlinear
system. Mareels and Bitmead(1986, 1988) showed that
under the presence of undermodeling error, nonlinear
phenomena in the feedback gain such as limit cycle and
even chaos arise in an discrele time adaptive control
system. A similar study shown by Mossayebi and
Hartely(1992) was that in discrete time indirect adaptive
control  systems, depending on the identification

algorithms, chaos may appear. Salam and Bai

t To whom all correspondences should be addressed.

showed continuous model reference adaptive control
system with o-modification scheme can give rise to a
complicaled behavior of motion when constant-plus-
sinusoidal reference input or dislurbance is introduced. In
the present study we investigate chaotic behavior of a
direct model reference adaptive control(MRAC) system
where dual external periodic inputs are introduced.

MODEL REFERENCE ADAPTIVE CONTROL

We consider a lincar plant described by the following
ordinary differential equation,

Pp(0)=a,y, () +u(t)+ (1) M

where yp(t), a, and v are plant output, unknown

constant and a bounded disturbance, respectively. A
reference model is given by

Y= =0,V (D+r(t), a,>0 )

where y,(f) and r(®) is reference input. If we define

conirol n(t) as
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u(t)= &)y () +r(t) 3
where @t) is control parameter, and v(f), r(f) are

bounded disturbance and reference input, respectively.
When output error and parameter error are defined as

a=Y,~Ym $=0-0 0)

and there exist no disturbance, the system can be reduced

{o
601 = —apa (D)4 KDy, (1) | 5)
Hi)=—g-e(t)y,(t) (6)

where g is a positive adaptive gain that accelerates its
convergence. For this ideal case, based on the Lyapunov
second method, uniform stability is guaranteed since a
Lyapunov function such as

V=(e.,¢)=(e.2+-z‘;¢2>/2 %

is obtained(Narendra and Annaswamy, 1989; Sastry and
Bodson, 1989). Hence the output error converges (o zero,

i.e, lim/ - og, () = 0. Therefore any other attractors ,e.g.,
limit cycles or chaos does not exist. However, this
stability proof does not hold when certain types of
disturbance or reference input exist.

If yp(¢) is expressed in terms of y,,(f) and ¢(t), the
system is given by

€=—aue + iyt fo+v 3

and a modified parameter updating rule(Narendra and
Annaswamy, 1989) of the form,

$=—eyn—ef ®

In this study, we consider two external inputs which are

reference input and disturbance,
Ym(1) = py cos(w1) (10

v(t)= pycos(wyt) an

where p,p,,w and w, are some constant parameters.
As shown in eq.(8) and (9), MRAC includes nonlinearity
due to parameter adjusting algorithm (9). Hence, various
nonlinear phenomena might happen in this class of systems
if stability is not guaranteed. Next, several methods to
distinguish deterministic chaos from uncertain random
noise will be briefly described relevant to the present
study.

CHARACTERIZATION OF CHAOS

Simply stated, chaos is a bounded random behavior of
motion from a deterministic system. The attractor of a
chaotic system is called strange attractor. To distinguish
deterministic chaos from external random noise, several
observation techniques and computation methods are fre-
quently used. The easiest way to characterize a chaotic
dynamics is observing its time series. But this method does
not guarantee the presence of chaos, but if the time series
shows random behavior, one might suspect that this system
possesses chaotic nature. However this is not sufficient to
show that it is chaos. If we plot 2D phase portrait of given
chaotic time series, the flow of chaotic system shows
tangled feature in a certain bounded area of a state space.
Third method is to consider a hyperplane so that the flow
of the system intersects the plane and to observe its pier-
cing points. Here the hyperplane is often called Poincar
section. If the system is chaos, intersection points on the
plane are localized in a thin band. Power spectrum of the
chaotic time series shows broad band type continuous
spectrum with multiple peaks sitting on the of the broad
band.

To qualify and quantify its behavior of motion more
concretely, it is necessary to compute Lyapunov exponent
or dimension of the attractor. We consider an n-
dimensional state space where a trajectory of a certain
dynamical system takes place. If we observe the long term
evolution of an infinitesimal n-sphere whose center is a
initial condition of the trajectory. Alter a certain period of
time, the sphere will become an n-ellipsoid due to locally
deforming nature of the flow. The ith one-dimensional
Lyapunov exponent is then defined as
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.1 piH)
}'iE ~log, +-+—
P )

(12)
where p;(f)is the length of principal axis at time t. This
Lyapunov exponent is quantitative value of expansion or
contraction of the given flow along linearly independent
directions. The sum of the Lyapunov exponents is the time-
averaged divergence of the state space velocity. Positive
exponent implies divergence along a direction, while
negative implies contraction of the nearby trajectory.
Therefore any dissipative system has at least one negative
exponent and sum of all Lyapunov exponents is negative
unless it is unstable. In three dimensional continuous
system, the limit-set, attractor has only three possibilities
of Lyapunov exponents' combination. Those are (-, -, -)
which is asymptotically stable equilibrium point; (0,-,-), a
limit cycle; (0,0,-), a two-frequency torus and (+,0,-), a
strange attractor. Systems with one or more Lyapunov
exponent is chaos. When a flow takes place in a 3-
dimensional state space, the strange attractor or chaos will
have one possible set of Lyapunov exponents, e.g., where
its signs of the values are (+,0,-). In continuous 4-
dimensional system, three possible types can exist which
are (+,+,0,-),(+,0,0,-), and (+,0,-,-) (See Parker and Chua,
1987, Wolf et al., 1985). The first combination that has
two positive Lyapunov exponents is defined as /iyper-
chaos that has two divergent directions.

Another characterization method of chaos is calculating
the attractor’s dimension. While non-chaotic attractors such
as equilibrium point, limit cycle, or n-frequency torus,
have dimension of 0, 1 and n, respectively, which are
integer dimensions, chaotic attractor has non-integer
dimension. One of the easiest definition of dimension is
Sfractal dimension defined by

. InN(s)
D, =limitV)
froct = S Tn 1/ 2)

(13)

where N (&) is he number of volume elements to cover an
altractor with diameter £ volume elements. If the
objeclive attractor is a manifold such as line, point, or
surface, evidently D, is integer. However, a strange
altractor has non-integer dimension. A definition of
dimension, information dimension based on Lyapunov

exponent is defined by

J
A
D; = j++= (14)

j+1

where Aj are ordered from largest to smallest, or

JjH JjH

> A>0and )" A<0 (15)
i=1 i=1

Typical chaotic systems, ¢.g., Lorenz system has Lyapunov
exponents of (2.16, 0.00, -32.4) and information dimension
of 2.07. Rssler's 3 dimensional system has Lyapunov
exponents of (0.13, 0.00, -14.1) and information dimension
of 2.01. Other definitions of fractal dimension-like
quantities are defined by numbers of references(See Parker
and Chua, 1987, 1989).

CHAOS FROM MRAC

We investigate the adaptive control system of eqs.(8)
to (11) when constant parameters py, p, ,w; and w, are 20,
5, 1.2 and 13, respectively. We integrate from an initial
condition (0,0) as time varies. Time series of egs.(8) to
(11), shows random behavior of motion(See Fig.1).
Integration was done with relative error tolerance of 106
using LSODE subroutine in Trigem SDT-700.

TIME SERIES
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Fig.1 Time series of eqs.(8) - (11).
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This result is not sufficicnt to prove that it is chaos,
since a quasiperiodic flow on an n-frequency torus might
show similar dynamical time series. This results initiatéd
our supplementary investigation of the system. After post-
transient response, the flow eventually falls on the strange
attractor. The limit set does not show any equilibrium,
limit cycle or n-periodic limit set. Two and three
dimensional phase portrait is given by Figs.2 and 3
respectively. Power spectrum is computed with 10000
point of time sequences from integration of the system with
MATLAB ver. 4.0(Sce Fig.4) on a 486DX2 PC. Power
spectrum and 95% confidence interval were obtained. The
spectrum shows continuous broad band noise with
numbers of peaks. This results shows that the system is not
a quasiperiodic dynamics from n-frequency torus which is

discontinuous in power spectrum.

Fig.2 2-D phase portrait of the system.
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Fig.3 3-D phase portrait of the system.
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Fig.4 Power spectrum of the system.

The direct experimental results of time series, phase
portrait, and power spectrum of Figs.1 to 4 are sufficient to
prove that this system is chaos. But several questions still
remain: how fast does a nearby orbit converge and what is
the dimension of the attractor? Answers to these two
quantitative questions can be obtained by calculation of
Lyapunov exponents and fractal-like dimensions. A
method of Lyapunov exponent is given by Wolf et al.
(1985), which utilizes fiducial trajectory and orthonormal
vectors of given system. The Lyapunov exponents obtained
are [9.65126, -12.3986, 0, 0]. Two zero exponents are
obviously from two periodic egs.(10) and (11). One of the
Lyapunov exponent , 9.65126 shows the rate of divergence
while -12.3986 is rate of convergence. Summation of all
Lyapunov exponents is -2.74734, which implies this
system has an attracting limit set. From calculated
exponents, information dimension is directly obtained by
eq.(14), which is 3.7784. This value shows that the
attractor is not a manifold such as n-torus, but a cantor-
dust-like (See Parker and Chua, 1987 for details) fractal

set.

CONCLUSIONS

In this study, a model reference adaptive control system
was invesligated when two non-autonomous factors and a
modified control parameter adjustment algorithm are
introduced. The plant and reference model were typical
linear first order continuous systems. The system is
asymptotically stabie in the sense of Lyapunov if there is
no non-autonomous element with straightforward gradient
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algorithm. However, if some periodic external inputs such
as sinusoidal signals, it affects the system and generates
chaos that is a bounded random motion with a certain

degree of regularity.

The system was rigorously investigated through phase
portrait, power spectruin analysis, and quantitative
characterization such as Lyapunov exponents and
information dimension that manifest the existence of

strange altractor, chaos.
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