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On the Forced Vibrations in the Nonlinear Symmetric Structure by Using the

Normal Modes

( Chol~Hui Pak , Sung-Chul Choi )

1 mm.

The forced vibration with the symmetric boundary
condition in nonlinear structure is studied by utilizing the
characteristic of the free vibration which have two modes
with the similar natural frequency. Two linear modes exist
to have no concern with the amplitude. It is found that the
normal mode or elliptic orbit as the newly coupled modes
is generated in accordance with changing the stability. It is
also known that responses for forced vibration having the
small external force and damping are near mode of free
vibration and the stability for each response is determined
according to the stability in mode of free vibration. Finally
the stability and bifurcation are analyzed in proportion to
increment of external force and damping.

2._Calculation of Normal Mode

A normal mode is also a periodic motion of the system
which passes through the origin and which has two rest
points.And the formal definition of normal mode was firstly
introduced by Rosenberg. The concept of normal modes has
a very sinificant meaning in that the resonance in forced
vibrations occurs when the forcing frequency lies near to
the natural frequencies and the system vibrates in normal
modes in the neighborhood of resonance®..
In this section the behaviors of normal modes are
investigated by using the harmonic balance method. This
methos is applicable to nonlinear systems and only first
tern  approximation of harmonics in the Fourier series
expansion can make a good results. Thus nonlinear normal
modes are to be approximated by considering just first
order harmonics. Now consider the following equations of
motion:

f+ Px+ae®+ v = 0

y+ Py +n'+ st =0 M
where the kinetic and potential energies are given by :
T = %-(x? + A
(2)
V= 3R+ P+ et + Lady 4 1n

Assuming that the solution is the first term in Fourier
series,
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x = A sinot, y = B sinwt 3)
and substituting equation (3) into (1), neglecting the
third-harmonic components, eliminating @’ —term  and

ignoring higher harmonic,

ABP} - F) + 3 AB[ (a-BA' + (B-DB) =0 ()

Transforming equation (4) into polar coordinates,

A = Rcosf , B = Rsind
where 8 is the angle between modal line and x~-axis and R
is the amplitude of normal mode.
(4) in polar coord, dividing by
supposing p = tan§, where p is mode shape.

After representing

equation costd and

A (B-FX1+) + 2{(a-B + B-DAR =0 ©)

When R = 0in eq.(5), p = 0, 8 = 0 (x-mode) and 6 = n/2
(y-mode) are obtained. These modes correspond to the
normal modes in the linearized system. Since the amplitude
R increases (the total energy h increases), 8 change from 0
to n/2. So mode shape p has the following form.

(F-P) + 2(s-a) R
(B-F) + $(-nF

0 and p* =

pz

According to the increment of energy, there are bifurcations
and 4 cases in this problem.

R = 24

Case 1 :
%(3—7)

Ma and By

Bifurcation exists continuously if R is larger than R, .

R, = 1| —2_%1
’ V 3(a-p

Bifurcation exists continuously if R is larger than R; .
Case3: BCa and B7

In this case bifurcation exists in some range of R but if R
exceeds that range, bifurcation disappears.

Cased : fra and B{7r

Bifurcation doesn’t occur in any range of R .

Case2: fla and B<{y

Analysi
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To use the perturbation method, let’s consider the systems
with the potential energy V :

V= %(x2+sz2) + e(%ax‘+%ﬂx2y2+-i—ry‘)
where P* is the linearized frequency ratio between P; and
P,. And we suppose P’ =1 + &4 to utilize the
perturbation method. Equations of motions in this system is

] x+ x + eBxt + &) 0
v+ (1+edy + (8 + »d) 0

By using the two variable expansion perturbation method
[2], we obtain derivatives on Ry, R;, 8,, 8, which naturally

(6)

written in terms of the variable ¢ : ¢ = 6,—86,,

dR .
& = %ﬂRngsmw
L~ —Lr,Risinzg
i 8
o H N @
g = —Sﬁkg[ cos2¢+2] -~ SGRf
7,,1 = *'g‘—%ﬁf?ﬁ cos2¢+2] — %7135

where Ri is amplitude and 6; is the phase difference.
Finally we transform to polars R,¢ in the R,—R; plane,

R, = Rcos¢, R, = Rsing

which replaces Eq.(7) by the following :

dr _ 0
dy
% = - % BR%sin2¢- sin2¢

—Z% = - —‘24 - -é— BR%cos2¢(cos 2¢+2) + -g- aR*cos ®g— -g- yR2sin¢

The above equation can be integrated exactly and the first
integral of the motion is what as follows :

K(¢, ¢) = —% cos2¢ + %(a+y)cos4¢ + -g-(a—y)cosw
+ %Bcoszd‘) - -1%(2+ cos2¢) cosd¢ (8)
= constant

Because the orbit of a periodic motion is an ellipse on the
configuration space, we defined such a periodic motion as
an elliptic orbit(EO).(R. Rand et. al,, 1992) EQ’s correspond
to singularities in the ¢—¢ plane for which ¢ + 0, x, cf.
Fig.2. In addition to revealing the exié,tencgz of periodic
motions, the first integral (8) also disclose their stability.
The stability of the periodic motion in the original system
(6) is the same as that of the singular point in the slow
flow eq.(8). Since the system is conservative, only centers
and saddles can generically occur, and so their stability is
easily discerned. A elliptic orbits is stdble and two normal

Y

i N

Fig.1 Elliptic orbit in configuration space

_22_

w

IR

~

Y

!
)

SRR
) ) ///i / )/ /
AL

o
//}/

/

/ {

T
o

(a)

SRR ! [
W\ \\\

\

TN }

///l

—.

/

1

/ / / V)
// %/// /

e e.2 0.4 2.6

(c)
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modes are unstable.

Figure 2 is the picture of flow changing as energy is
increased, where the energy is selected when the
about to be generated. This result
corresponds to the results of the calculation of bifurcation
energy for normal mode and elliptic orbit. To illustrate the

stability and bifurcation for elliptic orbit, consider a system
)

bifurcation  is

which has the following parameters

{4, a, 8,7} = (1.25,0.195762, 0.164874 , 0.160992}
Fig.(a) has no bifurcation at R = 2. Fig.(b) show a
bifurcation of elliptic orbit at & = #/2 and R = 35. Fig.(c)
has three bifurcation points which is two bif.pts for normal
mode at & = 0, ® and R = 8 and one for elliptic orbit at ¢
= #/2 and R = 8 Fig.(d) has only bifurcation point for
elliptic. orbit at ¢ = /2 and R =21.

3-2. Calculation for Elliptic QOrbit

Assuming that the solution is the first term in Fourier
series,

Asinwt

x =
= Bcoswt

y

and if we claculate the elliptic orbit with same procedure in
normal mode, one can obtain the following equation and
mode shape p has the following form.

(F-P) + $(8-30R°
(B-P) + +(B-3F

2 ==

p= 0 and p

According to the increment of energy, bifurcations occur
and 4 cases in this problem.

R, = 2= Py

Case 1 : 1
4 (837

A3a and B3y

Bifurcation exists continuously if R is larger than R; .

Case 2 : PA<3e¢ and A<37 R, = LI St S

Liq.

1 (3a—-pH

Bifurcation exists continuously if R is larger than Ry .
Case 3: B<3a¢ and B>37r

In this case bifurcation exists in some range of R but if R
exceeds that range, bifurcation disappear.

Case 4 : 8>3a and B<(3ry

Bifurcation isn’t occur in any range of R .

Synge’s concept of the stability of periodic motion is
treted. Synge has introduced a somwhat different concept
about stability of periodic motion, called stability in the
kinematico-statical sense. This concept is equivalent to the
orbital stability and The concept of Synge’s stability in the
kinematico-statical sense seems to be stronger than that of
Liapunov stability because it is based on a concept
reminicent of orbital stability defined in the configuration
space. Moreover Synge’s procedure for determining the
stability is likely to have some advantages in comparision
to others. For x-mode,thus,we have

B+ (6 + ecos208 =0 -+ (9
where
_ A 2 oAt . .

The equation (9) is standard mathieu equation whose Strutt

chart. is well-known. A and B are the direction which
the bifurcated modes proceed to as energy increases. Point
C is a bifurcating point for elliptic orbit and point D is a

bifurcating point for normal modes.

4, Stabifity in th n n

To study the stabilities of normal modes and elliptic orbit
in the sense of Lyapunov, the slowly changing phase and
amplitude(SCPA) method will be utilized We find the
autonomous system by averaging method,

2
a = —ﬁgw—}%c + g—;(az-i—cz)c + —fa-)(bzc+3cd2+2abd)
b= ——‘”—Z—_-ﬁd + -al(b2+d2)d + i(a2d+3dc2+zabc)
2
¢ = wszZ a — J'L(a +cha — —i(d2a+3ab2+2bcd)
j o' -P 3 8 2
d = —-Fta = LB +d)b — 7 (b+3bd" +2acd)

For the stationary solution, let {a, b, ¢, d} =
b=Bc¢=

0and a = A,
C, d = D in above equation.Finding backbone

Unatable Region:

Stable Re‘lon

V‘?
% A Un..%.mm
A % ]

Fig. 4 Change of stability for y-mode in Strutt chart
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curve for normal mode, let
above equations

o = B+ daa? + 38
w? P%+%—7Bz+-‘31-ﬂ.42

Finding the backbone curve for x-mode, B = 0 and

otherwise for y-mode, A = 0. Determining the stability for

normal mode , let’s suppose that a = A + M, b = B + 1y,

c = M d = Ty Substituting the supposition to the

equations, one can obtain the linearized variational equation.
{n=10¢C1n

where

(N={m., . n 2371 G} =[ g5, (ij=1,2,3,4)

The Jacobian matrix is composed of the following elements.

- _@-A 2A+
& = 2w 8w
Eu, = &n, = '%AGTB

. _o-A A2+
&u, 2w 8w

. @—F _ 9424358
&3t 2w 8w
82, = &y, = "%B‘

- @-F _ 9B +3p4°
8, = @ 8w

In this case the stability for normal modes is determined
by types and positions of eigenvalues of Jacobian matrix
[G]. And eigenvalues can be obtained in the following
characteristic equation.

A= K+ 404, = 0

where,
Ky = gugu, + 8ufu, T 8n8n, + 8ule,
4, = gufu, — Su.En,
2, = EnLo, — &nga,

In acoount of satisfying the equations of backbone amrve, 4,,=0.
= K =0
Because B = 0 for x-mode, eigenvalues are
7
BA*\ WP
+ g X

Az = 0,
' — P}
iJ(_ 2w 20

According to the above results, calculating the eigenvalues,
we can get the same result in comparison to the different
methods which determine the stability. For example if

Then characteristic equation becomes :

_ 4%,
8w

A =

Amplitude /
7.4 B C
3.5 A
1 166 3 %)

Fig.5 backbone curve for x-mode

c =d =0 We can get the"

eigenvalues are purely imaginary, this case is stable in this
frequency region and if eigenvalues are real, this case is
unstable in this frequency region. The point A where the
stability is changed for unstable is bifurcating point for
elliptic orbit and the point B where the stability is changed
for stable is bifurcating point for normal mode.

ndam Far Vibration

The steady-state solution of the system can be
approximately obtained by using the SCPA method. The
frequency response curnes can be obtained by solving the
statioinary solutions of equations :

2_ 2

a= - wzwp, c+'§1{;[ 3a(d*c+ ) + A8 c+2abd +3cd®))

. WZ_P% 1 24+ P 2 2

b= ——g = d+ 5ol INEd+@) +Ka d+2abe+3dcD] (10

2_ a2

= Ll o ol 3a(at )+ Ko+ hed+ar?)) +-E
d= LBy L3Py ) B 2acd +35a)] 42
T 8w ¢ ac 2w

But we will consider the case when f = 0 and f; % 0.

-1, The Stationa| lutions and Fry ncy R
for Single M X

nse Curve

The stationary solutions correspond to single mode response
of the forma=Acoswt or ~Acoswtand b = ¢ = d = 0.
Thus response curve of single mode is the following form.
This form corresponds to the upper branch (out of phase)
and the lower branch (in phase)

a= 6= d=0 ,

SR S _ 1 3 2 .

€= Za)(w PhA Bw(3aA) * % 0

—-2. Th ion
for Normal Mode

lutions and Fri ncy R n v

The stationary solutions correspond to normal modes are

a = Acoswt or a = —Acoswt,
b = Bcoswt or b = —Bcoswt, an
and c=d= 0.

Substitutig eq.(11), ¢ and d into eq.(10), equations of upper
branch and the equations of lower branch are

a= 5= 10

é= Jo(o-MA—[ 3aa"+38a87] =50~

d= F(a"~)B- g1 378°+38BA%) = 0
Equation (*) is a condition for amplitude B to exist.

— ion lutions and Fr ncy R n:
for_Ellipti i

The stationary solutions correspond to elliptic modes is

a = Acoswt or a = —Acoswt,
d = Dsinot or d = -—Dsinwt, (12)
and b= ¢c= 0.



Putting eq.(12), b and ¢ into eq.(10), we get the equations
of upper branch and lower branch are

a= d=0
b= — 3"~ F)D+ - (370" +pA'D) j R (+%)
= L _pyA-l 3 &
¢= go(o'=PDLg {304 +8D°AYE 5 0
Equation (*#*) is a condition for amplitude D to exist.
-4, Stability Analysi f Undam For ibration _an.
Investication for Bifurcation

To analyze stability for single mode response, normal mode
and elliptic orbit, we calculate the Jacobian matrix by the
perturbation method and investigate the changing position

of eigenvalues. Firstly to investigate the stability of
stationary solutions, let
a=A+n, b=B+np, c=Ct+n, d=D+y, (13)

Substituting the introduced equation (21) into (17) and then
composing the Jacobian matrix, we can get the following
variational equation.

7=10G) »
where [G] is
- AaC + 2BAD,
e = 8w
_ _BQ2BC + 2AD)
€ = 8&)
o — 3a(A” + 3C) + KB + 3D°) (=R + )
13 Sw 20
o — B2AB + 6CD)
H 8w
_ 2BC + 2AD)
ey = g
W
_ _(2ABC + 6ByD)
ér = 8w
_ 2AB + 6CD)
én = 8w
_ BHA* +3C) + 31B + 3D (=F + o)
ey =
8w 2w
_ _3a(3A% + C) + p3B* + D) | (=P + &P
e 8w 20
e — _HBAB + 2CD)
# 8w
on — —ABAaC + 2BED)
» 8w
_  _ _X2BC + 2AD)
ey =

8w
_ BBAB + 2CD)

€ = 8w
_BGAY + ) + 3B + D) (ZF + o)

€ = 8w 20
en = — B(2BC + 2AD)
3 = 8w
_ _ _(28AC + 67BD)
€y = 8w
The stability of the undamped forced vibration can be

determined by the types of the corresponding eigenvalue A's
of the characteristic equations

Det|[ G1 — Al I} 1 =0 (14)
or

22— K+ 4)(e)dy(e) = 0

where
K(&) = ep(€)ear(e) + eu(eleale) + exn(Elem(e) + exnl€les(e)
A(&) = ens(8)enlE) - ew(elenl(t)

A(e) = ea(Elen(E) - ex(E)eq(€)

Composing the Jacobian matrix to find eigenvalues for
single mode,
ey = €3 = ey = € T en = epn = ey
=ep=ey=eg=eg=ey=10
_ g, _ o -A
- e = 8wA 22aJ 5
- B _ @~
€u BwA 220) e
@ -
Tl e P
2
o' — P
o= ~Par+ S5
Calculating the eigenvalues,one can obtain the below
equation.
1 2 2
+ B2 + F) =
209657 (A X F) 0
where

E: 21d*A* + 48aA%Pi— o) — 2P’ + 16(o'+P)
F: 384° + 16BA%Fi—o®) — 2P0’ + 16(0'+FD)
According to the changes of E and F, stability of the
single mode response is determined. Jacobian matrix for

normal mode is made up of the following elements.

ey = ep=¢e = ep=epg=ey=eg= ey =10
_ (3qA% + gBD _ (=P +d)
ény = 8w 2w
- BAB
ey = dw
- _BAB
8T i
o — (BA* +3yBY) _ (“F + oY)
U 8w 20
- _(9eA’ +388) | (ZF + oY)
o = - 8w + 2w
€y = = 4(03
_ _ 978" + 384% (=P + o)
eg = --HELIMAL oSl

We can get eigenvalues through the followed equation but
the characteristic equation for normal modes is very complex.

5-4-1, For Stable Normal Mode
Let's suppose K(g) = - @* | where Q is a real constant. It

is range of backbone curve that is stable. Then eq.(14)
becomes

M+ PR +eda=0
where A = f(A,Az).
Therefore the eigenvalues are

L= = , —& + 229‘—2&1
e = 2 =L = 21.@‘-254

If
- @+ V244> 0

then 4¢A < 0. This means that two eigenvalues are real
and two eigenvalues are imaginary. This implies that if €A
<0 , the response is unstable.
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And if
- P+ V@ ~4ed 0

then 4¢A > 0. This means that four eigenvalues are
imaginary. This implies that if €A > 0, the response is
stable.
Therefore in this case, the stability of upper branch is
opposite to that of lower branch of frequency response
curve.

5-4-2. For_unstable normnal mode

Let’s suppose K‘(E) = @, where Q is a real constant. It is
range of backbone curve that is unstable. Then eq(14)
becomes

M-+ ed=0
where A = f(A A7),
Therefore the eigenvalues are

dp= * & + ; —4ed
doa= % .QZ—Z.Q‘—EA

If
@ -2 —4ed ¢ 0

then 4eA < 0. This means that two eigenvalues are real
and two eigenvalues are imaginary. This implies that if £A<Q,
the response is unstable.

And if

O — V& ~4ea > 0
then 4eA>0. This means that four eigenvalues are real.
This implies that if €éA>0, the response is unstable.
Therefore the frequency responses of the upper and lower
branch of frequecy response curve are all unstable.
Jacobian matrix for elliptic orbit is composed of the
following element.

ey = ey=ep=exy=ep=ex=eg=ey=10
D
. 3zA’ + 38D A+ o
3 8w 2w
en = 4wD
o, = LA+ 91D -F + o
u 8o 2w )
e = _SeA’ + 0?2 | R+
3 8w 2w
- _B8AD
€ 4w » R
= 3BA* 43 | P+ o
Ga 8w + 2w
s T T
We can get eigenvalues through the followed equation but
the characteristic equation for normal modes is also
complex. Therefore eigenvalues for elliptic orbit is

calculated by the computer package mathematica. Because
the characteristic ‘equation of this case is equivalent to that
of normal modes, the stability of frequency response curve
for elliptic orbit is equal to the case for normal mode.

Fig. 6 response curves for undamped forced vibration

The section AB', that is range of the forcing frequency, is
the unstable region of the backbone curve in free vibration.
In this range the upper branch which have two real
eigenvalues and two imaginary eigenvalues is unstable and
lower branch having four real eigenvalues is perfectly
unstable.

The points AB are concerned with the response equations
of the normal modes and elliptic orbit. The pitchfork
bifurcation is generated Thus pitchfork
bifurcation from single-mode response to coupled-mode
response constant solutions occurs only because of the
coupled-mode disturbances. The point C is associated with
the response equation for single mode response and a
saddle-node bifurcation occurs at this point where the two
characteristic exponents are zero at these jumping points.
Hence these saddle-node bifurcation results in the familiar
"jump”phenomenon in the single mode response.

To illustrate the stability relation between free and forced
vibration,consider a system which has
parameters.

{w, @)= {1,1.5}),{a. 8. ) ={0.195762, 0. 164874, 0.160992}
{efi, e} = {0.1, 0.1} {c1. c;}={0, 0}

in this points.

the following

6. Damped Forced Vibration.

6-1. Derivation of Autonomous System by the Method of
Muitip} I

To analyze the following equations for the damped forced
vibration, we employ the method of muitiple scales.

i+ Px+ o + B+ = ficoswt (15
v+ Py + 72 + APty = freoswt
where,
o = P+ &4
of = B+ el -
a, 8,7} = {ea,eB, e}, {c1, ) = {ecy, €0}
{fl.fz) = (Efl.Efz)

One begins by
according to

introducing new independent variables
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n=1,2,--- (16)

It follows that the derivatives with respect to t become
expansion in terms of the partial derivatives with respect
to the Tn according to

4 — Dy + eD, + €D, + -
7}% = D} + 2eDyD, + D% + 2e'DyDy + ¢ ¢ -
One assumes that the solution of eq.(15) can be

represented by an expansion having the form

b &) =x( Ty, T\, Ta, )t ex|( Ty, Ty, To, -+ )+ %0 Ty Ty T, ++)
K& =y( Ty, T1.Tav oY+ To, Ty, Ta, +»* )+ %9 Ty, Ty T+ ++)

Substituting eq.(16) and eq.(17) into eq.(15) and equating

0 1

the coefficients of & , & to zero, we can get the

following equations.
&% Dixg+w’x=0 (18)
Diyo+w’y=0 (19)
e DRx,+2DeDixy +wix, — dixy + axy + BxoyE + ¢, Dyxy = ficos wt
Di 3y +2DyDyyo+ Py, — dyyy + 793 + Byoxy + exDoyy = Frcos wt
With this approach it turns out to be convenient to write
the solutions of (18) in the form ’
1 = Ae®T 4+ A T

T (@0)

where A and B are an unknown complex function and

A and B are the complex conjugate of A and B.

Substituting the eq.(20) into the equations of &'-order,

Dix; + o', = ficoswt—2D(Aiwe’
+ d(Ae”T+Ae ™)
—~ a(A%™ T +34% A" +34A% T+ Ale
— BlAe™" +Ae *™) (Be‘”T°+Be"‘”T")
—- ¢ (Aive o _Aiwe ™)

and a similar equation on y,. Elliminatig the secular terms

Te 7 — T
T _Aiwe ™ °)

from x; and y; ,

f’ —2Aiw+0,A—3aA*A~2BABB— AR — c|Aiw=0 on
1
%—231m+423—373213—23ABA—ﬁBA“-CZBm=0

In solving equations having the form of (21), we find it
convenient to write A in the polar form.

R Ry -

A = Te"’" B="e (22)

where R,, R, 7; and y, are real functions of T; .

Putting the eq.(22) on eq.(21) ,
equations.

we can take the following

%( cos7;, +siny) —iRw—R, ﬂw+dl%—g—aRf—leR§

. R
“gRle(COSZ(h — r)+isin2(y, — 72))_01“”_2‘1' =
%( cos 7y, +sin72)—i}?2w—Rn}aa+Az%— 8 7R§—§R2Rf
_'ngR%(COSZ(Yz — n)+isin2(y, — n))—cziw% =

Separating the result into real and imaginary parts,

—31'uTa)

(a) R, =—£LR +—LR1R§sin2(h— n)+—% siny
aR’+ RRZ[ 2+00$2(72‘71)] —'é—lwcosh
R2R25m2(rz - 71)+ (23)

@ Rzrz=—ERz+—83;TR;+—8%;RzRﬂ 2+cosz(rz—71)] -4 cour,

A
—Z;R,+

(0 R, ““_Rz

(8 R r=-

o Sin72

If these equations transformed into cartesian
coordinates, those are same to the equation derived by
harmonic balance method if damping term is ignored.
Therefore methods of derivation is different but each result
is alike. In next section we'll obtain the frequency response
equations and determine the stability with the derived
equations.

are

. ivation _and _Analysi he Frequen n

Eguations for Single and Coupled Modes
-2-1, For Single M

This case is that f2 and R: are zero.Therefore in eq.(23-a)
and (23-b) one can take the following equations.

1?,=—52‘—R,+7f‘5smn=o )
i 2 pe (24
Ry = -w—z-a———LRl - —;5-—111?3 + 5p08n = 0

Using Eq.(24), we find the frequency response equation in
the form.

B

2
Gry + B - ey - A,

R - 8w 4w

For led M

This case is that f2 is zero and Rz is not zero. Then in
Eq.(23~¢) and (23-d),
Ry= - Ry
2
R27%= (uzw <

-‘S%RfstinZ(h - =0 (25)

— 21 398} + BRIRY2 + cos2(r =7 =0

Rearranging the sine and cosine terms to the right parts
and squaring on both sides, we have
2 Pz _&z AR P R\
R§ o ) =« 8w )

—4—+(

Rz is calculated in above equation. A calculated equation
for Rz substitutes into the Eq.(31-a) nad (31-b) and
rearranges,

]

[ -2 AR 4L iam+ 4 Pz)R%—-%f-R;)]

+ (7R1+2_Rle) = -4%2- (26)

Eq.(26)

modes.

is the frequency response equation for coupled

Relati n rci li

The energy dissipated in a complete cycle is given by

—-27—



W= feclx'dx + §5cz;}dy

where
x =
y =

—wR sin(wt—7,)
—wR,sin(wt—y;)
Therefore we can rewrite equation of the dissipated energy,
z z
W= €( fo i’ RisinYwt—7) dt+ J; w0’ RisinX(wt—y,) dt )

= £¢,0’R} (% +5in2y,) + € c,0°R2 (-:j +sin27,)

And the total excited energy is

W, = fgj,coswtdx-}- ﬁsfzcoswtdy
2

2z
= - _L : &f\wR,cos wt sin{wt—y,)dt — L ef,wRycos wt sin(wt— r)dt

= efiR\xsiny, +&f,Romsin y,

For the case of single-mode response it has the conditions,
f2 = 0 and R: = 0. The excited eneryg is equal to the
dissipated energy. Thus we can get the relation force

amplitude and damping constant.
u’i = bvvoul B
R = firsiny,

c,wz(% + sin27y;)

There is a phase difference between the applied force and
the response and if the phase difference is /2, the
following relation is taken.

A

R o= )

Using the introduced method, we can obtain the concern of
amplitude, damping constantfrequency
amplitude for each response.

and forcing

Ayl
20

forcing Amphtude : 10
Damping constant: 0.001
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7 nclusion

1. It is ascertained that another periodic motion which is
ellipse in the configuration space exists.

2. The change of the stability in force vibration is deeply
concerned with that of free vibration.

3. The stability for single mode response changes at the
points where the single mode response meets the
coupled modes response and reason for changing the
stability is the disturbance of coupled modes and it is
known that a bifurcation occurs when the stability for
each mode changes.

4. It is known that the equations for the stationary
solution obtained by the averaging methods are same to
that derived by the method of multiple scales.
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