GEOMETRY OF BED FORMS IN THE LOWER FLOW REGIME

e

Soontak Lee’, Hong Ki Jee', H. M. Nagy ', Ki Ho Park
1. Introduction

In recent years it has been made clear that until a fundamental understanding of the reasons of formation

and the characteristics of bed forms is achieved, precise approach to problems of bed configurations remains
largely on a rather roughly empirical formula. In general, it mught be suggested that the prediction of the sand
wave geometrical shape requires a full understanding of two main fundamentals @ one is the initiation process of
sand waves, the second is the growth process of the sand waves. If the two processes were precisely
understood, it would be possible to predict the shape of sand waves. In particular, it might be essential to
correlate the wave length or height with the flow resistance, bed load transport rate and bed roughness.
Most of previous studies, for the geometrical shape of sand waves in open channels and alluvial nvers,
concentrated on height of dunes and antidunes. On the contrary, length of bed forms such as dunes and ripples
has a lack of interest. The biggest part of these studies introduced the wave number and the Froude number
relation as a boundary for bed stability.

The purpose of this study is to explain the geometrical shape of sand waves from a more theoritical point of
view according to the study by Hirano". Characteristic dimensionless wave number equation is derived from the
real part of the dimensionless complex propagation velocity, which represents the logarithmic growth rate of an
initial disturbance. The functional relation is numerically solved, and then the effect of various parameters on the
wave number is clarified. As a result, a simple form of wave number equation is obtained. Finally a comparison
between theoritical results and data collected from rivers and experimental flumes are performed.

2. Length of Sand Waves

2.1 Linear stability analysis

In the theory, according to the study by Hirano®, small scale sand waves are treated as two dimensional bed
configurations in the sence that their formation is independent of the channel width.
First, continuity and momentum equations for one dimensional flow are used to discribe the flow properties as
follows : Continuity equation for flow :
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where t is the time, x is the coordinate in downstream direction on the undisturbed bed, h is the local water
depth, um is the local mean velocity over the cross section in x-direction.
Momentum equation for flow :
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where g is the acceleration gravity, 8 is the slope angle of undisturbed bed, A is the Jaeger coefficient, z 15 the
elevation of bed taken from the average bed surface, p is the mass density of water and T, 1s the bed shear
stress.

Second, a continuity equation for sediments and an equation for bed load discharge in non-equilibrium state
are used to discribe the sedimentation phenomena, respectively.

Continuity equation for sediments :
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where £ is the sediment porosity, / is the average step length of a sediment particle, qbe and gs are wansport
rates of bed load per unit time and unit width of bed in equilibrium and non-equilibrium state, respectively.
Equation for bed load discharge in non-equilibrium state :
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where Cs is the bed load concentration in the bed layer, a* is the thickness of bed layer, wo is the fall velocity
of sediment particle and $(0), F(0) are functions of 6=(wq / 0.93 u* ) , in which u=x is the shear velocity.

The formation of sand waves is a result of local erosion and deposition produced by the irregulanty of
sediment transport in the flow direction. The flow over wavy beds accelerates and decelerates, espesially in
shallow water depths, and a separation zone is formed in the downstream face of bed forms. Considering these
factors, the local bed shear stress is given by
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where D is the velocity defect at the bed, 8, , ¢, are values of A and $o = um /u* for uniform flow, respectively,
and a is the empirical parameter denoting asymmetric distribution of bed shear stress.
By using the following dimensionless quantities :

{=z/ho, X=x/ho, T=tge/{(1-€)hj} D
a sinusoidal bed is introduced in the form
U=Le(vt+iBx) ®

where £ is the normalized amplitude of disturbance, g is the dimensionless complex propagation velocity, and b
is the dimensionless wave number defined by(2rhe/L) , where L is the wave length . Subscripts 'o’ indicates the
undisturbed flow quantity. By using an infinitesimal wave theory and assuming a quasi-uniform flow, g can be
derived from above equations as
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where F is the Froude number, U is the mean flow velocity, $so=qss/ V Sgds, 1s the specific weight of

sediment in water, wo:uz'o/sgd is the dimensionless tractive force, wfuz-c/sgd is the dimensionless critical Uractive
force, in which u. is the critical shear velocity, So is the longitudinal slope for undisturbed bed, a = 5, s =100 ,
A* =10 , k =85, x* = 005 and m = 3/2. The parameter (E) represents the non-equilibrium state of bed load
transport process. The parameter (W), which increases rapidly with the decrease of wo / u* , denotes the effect
of suspended sediment. The parameters A1 and Az represent the centrifugal effects of curvilinearity of bed surface
and water surface, respectively. These were introduced by Iwasa and KennedyZ) as sub-coefficients in the
equation of pressure correction coefficient XA, which known as the Jaeger coefficient. The value of XA was given
in the range of (0.4 - 0.55 ), and the value of Az was given in the range of (0.2 - 0.4 ).

2.2 Length of dunes and ripples
2.2.1 Dominant wave length concept

Flow-generated bed configurations in the lower flow regime, such as dunes and ripples, have a characteristic
wave length which depends on the properties of flow, fluid and bed material. From stability analysis by using
perturbation technique, the bed wave length could be obtained successfully from the linear terms of the
expanded equations. The sand wave length can be measured as soon as the sand wave begins to form and does
not change noticeably with the time. Accordingly, the linear stability analysis may be used to obtain the length
for fully developed sand waves even the theory is developed for the initiation of sand waves. The real part of
Eq. 9 is represnted by g1 which is derived in the form
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The parameter g) represents the logarithmic growth rate of sand waves and its sign identificates the stable
and unstable condition of bed. The dominant wave number bs corresponds to the maximum growth rate of bed
disturbance. Therefore, ba is obtained by differentiating g1 with respect to b , and then the first derivative is
equated with zero.

3Y1
ap =0 (13)

The general solution for bs from Eq.13 is given in the form
6
2n
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in which, the coefficients from A, to As contain the parameters F, f, , E ,W and q . Also they contain the
constants a , A1, A2 . According to Tsubaki and Saitoa), the parameter a is taken as 5. According to Iwasa and
KennedyZ),the values of parameters !1 and 12 may be taken as constants and equal to 0.5 and 0.4, respectively.

The solution of this equation gives more than one value for wave number bg . To clarify which value 15 the
dominant, the relation between wave number b and the growth rate of amplitude of sand waves is shown in
Fig.l by using Eq.12 for Froude number F = 0.3, velocity coefficient f, = 16, dimensionless tractive force yo= 0.1
and suspended sediment coefficient we / u. = 0.1. In the figure, when the sign of gl is negative, the bed is
stable and sand waves do not occur. When it is positive, the bed is unstable and the sand waves are formed.
Also it is quite clear that the wave number b = 55 is the dominant wave number bsa which gives the maximum
growth rate of amplitude for sand waves gm. From the previous discussion, the value of bs which gives the
maximum growth rate of amplitude for bed forms gm should achieve the following two conditions :

3

and gm is the maximum of the extreme values.
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Fig. 1 Relation between growth rateY, andf

2.2.2 Characterictics of dominant wave number
To examine the main factors which have effect on wave number, Eq.l4 could be expressed as the following
function

be =H(F,f,E,W,q) (16)
-2 2 . . .
By using the relations So=F/05 and UJOZhOSO/Sd. E 1s rewritten as a function of yo,
E Aa(1+A*Qpo)F* J
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Based on the model of Hirano®” for suspended sediments, the parameter W is a function of wo / u* , as
already mentioned. The parameter q ts a function of f, from Egs. 6 and 10. By using the above relations, Eq.
16 reduces to more simple and fundamental one:

be = f2 (F |, vo, o, wo /u. ) (18)

Numerical solution for Eq.14 is derived in order to investigate the four previous variables effects on wave
number values. Fig. 2 shows the relation between the Froude number F and the wave number bs for yo value
equal to 0.1, fo equal to a reasonable moderate value 14 and wo/u* equal to 0.1, 0.3, 0.8, respetively. The figure
shows a descending in bq with F, and the curve changes from linear to curvilinear form. It is also noticed that
be increases with the decrease of wo/u* for F > 0.6, and the curves for different values of wo/u* tend to merge
into the same single line with the decrease of the Froude number F. In Fig. 3, the relation between by und yo
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with a parameter wo/u* is shown for F = 0.3 and f, = 14 by using Eq.14. The figure shows that neither yo nor
wo/u* has any effect on the wave number value. The effect of the velocity coefficient f, on the wave number b
is investigated. Figure 4 shows a relation between bs and the velocity coefficient fo with a parameter wo/u* for
F = 03 and yo = 0.1 by using Eq.14. It is noticed that w./u* does not affect ba value, while f, has a little effect
on that value, especially for fo <10.

As been concluded from Figs. 2,3 and 4, the suspended sediment parameter wo/u* may be eliminated 1n
Eq.18 for low values of Froude number. Also from Fig.3, the effect of parameter y° may be eliminated in Eq.18.
Since the value of bg is approximately constant for the change of f, value as shown in Fig. 4, the parameter f,
may be eleminated in Eq. 18 without fear of accuracy. Consequently, the only dominant variable which has
effect on the wave length formation is the Froude number F. From above figures, Eq. 18 may be simplified by
neglecting the less effective parameters as

bs = f3 ( F) (19
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2.2.3 Practical formula for wave length
For the sake of treating with sand wave steepness, there is more particular interest of getting a practical
formula of sand wave length in the lower flow regime is demanded. From Fig.l, it is noticed that the dominant
value of b is quit near the marginal value bc , which gives the wave length before sand waves are washed out,
or which separates stable and unstable beds ( gl = 0 ). On the other hand, from the study by Watanabe and
Hirano”,the three boundary conditions for bed stability are expressed as follows

1-MB2F=0 (20)
1-(1+12BHF?=0 21
qga-2E*=0 (22)

Fig. 5 shows the stability diagram represented by b and the Froude number F. The solid lines represent the
three boundary curves which separate stable and unstable conditions, in other words, sand waves and flat bed
form. The dotted line represents Eq.14 with all parameters. The boundary curve from Eq.21 shows good
agreament with Eq.14 curve, especially for F < 0.6. From this conclusion one can put bd = bc in the lower flow
regime. By using Eq. 21, the practical equation for dominant wave number equation may be expressed in the

form
1
[3(1:1.58(F—1)0'5 (23)

The practical equation of sand waves length in the lower flow regime is expressed in the form of Eq.Z24.
L 4F
. | A— (24)

h (1-£)%

Most of previous studies of wave number and wave length have been made from distinctly different
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approaches. Based on the theory of potential flow, using the complex stream function, Anderson introduced the
relation between the Froude number and wave number as follows
2= sinh 2
B( tanhPsinh2p-2)
Ten years later, Kennedy modified Anderson’s theory and proposed equation which relates the wave number of
the dominant wave length to the parameter F ,
F2= 2+Btanhp

- 2
B°+3tanhB

Tsuchiya and Ishizaki assumed that the surface wave has a small amplitude, which is half the wave length of
the dune, then the following expression was introduced :

\/ 2tar1h2[3 \/’ tanhB o

Hayashi modified the study of Kennedy3) and introduced the region of occwrence of sand waves in F -b plane
by using the following equation :

{c+27V (c+2)*~8ctanh B}
4B8tanhp

in which ¢ is a dimensionless parameter and taken equal to 2. From Eq. 28, the Froude number has two values
Fl and F2 for one value of b and there relation could be represented by two curves Hayashi 1 and Hayashi 2 ,
as shown in Figs. 6 and 7. Nakagawa and Tsujimoto introduced the limiting curve for F < 1 by using the
following equation

F?= ———taghﬁ (29)

(25)

(26)

Fi,= (28)

From all previous expressions, it is needless to say that the only dominant variable which has effect on
wave number value is F. In Fig6, the data for dunes show scattering in a wide range, and neither the
presented curve nor reference curves, except one by Eq. 27, give a close agreement with scattered data. A
modification is conducted in Eq.23 to obtain the fitting curve for bs with the plotted data as

1
Ba=0.63( —F—2—1)°'5 (30)

Eq. 30 is completely compatible with Eq. 27 by Tsuchiya and Ishizaki curve for F > 0.20 as shown in Fig.
6. In Fig.7, despite considerable scattering of the plotted data for ripples, the curve given by Eq. 23 shows the
trend of data and lies the average of scattering more than the other comparable curves. A modification is
conducted in Eq.23 to obtain the fitting curve for be with the plotted data as

1
Ba=1.4( -}7-1)"5 31)
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Fig. 7 Comparison with various theoretical results

Fig. 6 Comparison with various theoretical results
and the experimental data for ripples .

and the experimental data for dunes .

3. Conclusions

Using linear stabiity analysis, bed forms in the lower flow regime was examined analytically for determining
the dominant wave length. The result was compared with the extensive bed forms data collected from rivers
and experimental flumes. From this study the following conclusions are obtained.

1) The dominant wave number value lies in the unstable zone for bed and u is very close to the marginal
stability value. It indicates that the linear stability analysis is applicable approach to the problem.

2) The suspended sediment factor wo / u* has a weak effect on the dominant wave length. For the low Froude
number F, one could neglect this factor in the wave number equation. On the contrary, for Froude number F >
0.6, suspended load should be considered.

3) For different values of Froude number, the dimensionless tractive force yo has no effect on wave number
value.

4) The velocity coefficient fo does not strongly affect the wave number value. The wave number bd slightly
increases with the increase of velocity coefficient fo effect and for more simplification f, may be neglected.

5) The apparant fact in this study is that the Froude number F is the major factor which affects the wave
length.

6) Using the previous results, a practical equations for wave number bd for both dunes and ripples are obtained.
7) To demonstrate the applicability of the theoritical approach, the practical equations had been compared with
the previous studies and data from rivers and flumes in { F - b ) plane for dunes and ripples, respectivelv. The
data show a good agreement with the proposed equations.
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