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ABSTRACT

We propose a aovel method to \ncorporate temporal correla-
tions into a speech recognition system based on the conventional
hidden Markov model (HMM). With the proposed method using
the exiended logarithmic pool (ELP), we approximate 2 joint con-
ditional PD by scparate conditional PD’s associated with respec-
tive components of conditions. We provide a constrained optimi-
zalion algorithm with which we can find the optimal value for the
pooling weights. The eesuits in the ¢xperiments of speaker-
wdependent continuous speech recognition with frame correla-
tons show error reduction by 13.7 % with the proposed methods
as compared to that without frame correlations.

L. INTRODUCTION

The success or failure of a hidden Markov model(HMM)
system relies on how well the models can characterize the nawre
of real speech. Various approaches bave been tried to take
account of frame comelations for more realistic speech modeling.
Some of them adopt the stochastic segment mode) or the dynamic
system made! in order 10 directly express speech feature trajec-
tories[1]. In the case of continuous HMM, some approaches 10
change the topology of a conventional model have been
developed([2](3]. Paliwal incorporated temporal correlation into
the discrete HMM by conditioning the probability of current
observation on the current state as well as on the previous observa-
tion[4;. With this probability
distribution(PD) is constructed for ¢ach possible pair of state and

approach, an  output

observation symbol. Even though this full parametrization is the
mOSt natural way 10 express the behavior of temporal correlations,
the number of parameters (o be estimated may incTease exces-
sively to get reliable estimates for the output PD's. As an alterna-
tive to this. a bigram-constrained(BC) HMM was proposed[5]. In

the BC HMM, the spectral shape «f an output PD in a stae is res-
tricted according 10 the observation symbel on the previous frame,

In this paper, we address the problem of efficient incorpora-
tion of frame correlations into the conventional HMM. Key issues
in this approach are how to precisely express true temporal corre-
lations, how 10 obtain robust estimates, and how to easily combine
with the conventional HMM scheme. The BC HMM serves a
good starting point to begin with tor the reason that it can easily

be combined with the waditional HMM recognition steps. But, as
for the way to express emporal corretations, we consider it to be

inadequate, though the intuition of restricting the spectral shape is
quite appealing. We focus on the way 10 combine separate condi-
donal PD’s in order to preciscly approximate the joint conditional

PD.
For this purpose, scveral candidate steategies can be found in

the field of statistics where the problem of aggregating a number
of expen opinions 15 addressed under the name of group inierac-
tion, consensus belief emergence, or managerial expert use(6).
Among many peoling operators, the logarithmic opinion
pool(LOP) attracis most, because it appears similar (o the BC
HMM while possessing a more flexible modeling capability. By
adopting a schematic form of the LOP, we propose a new method
1o incorporate frame correlalions based on the conceptual analogy
in which we trcat s¢parate conditienal PD's as if they were the
opinions with which we can determine the aggregated opinion,
i.e, the joint conditional PD. We will call the proposed methad
the exiended logarithmic pool(ELP) where the word "extended”
means that we expand the allowed region for pooling weights
which lie on a positive simplex in the original LOP. With this
ELP, we approximale a true joint cenditional PD by means of
separaic cenditional PD's in which the pooling weights are
estimaled so as 10 minimize approximation errors. To evaluae

appraximation error. we use the discrimination informaton which

-1 -



Frame-Correlated HMM#& ©l4% 8424

indicates to what extent a PD deviates from a given reference
PD[7]. The objective function expressed in terms of this discrimi-
nation information measure can be minimized by vsing a feasible
direction method applicable 1o a wide range of constrained optimi-
zationt problems[8].

In addition, we consider several related issues which are
shown to be ilispensable for enhancing the recognition perfor-
mance when we apply ELP to HMM-based speech recognition.
First, we suggest a method to derive phoneme-independent frame
correlaton PD’s with maximum entropy. ln spite of the fact that
temporal correlation highly depends on phoneme identity, the use
of phoneme-independent correlation PD's is preferred to that of
phoneme-dependent ones for a moderale or small sized raining
data due to the requirement for robust parameter estimation. Next,
we present a technique to combine two kinds of PD's through
some exponents which are estimated according to the maximum
mutual information(MMI} criterion{9]. Pracuically, the restriction
of a state specific output PD uswally yields 100 excessive concen-
tration over only a small region of the observation space. There-
tore, it is desirable for robust recognition to diffuse this concentra-

tion while maintaining most useful discriminability informaiion.

II. EXTENDED LOGARITHMIC POOL

Before inwoducing ELP, we briefly discuss how LOP works
for aggrepating a number of expert opinions. Assume that (wo
experts provide their opinions in terms of a PI» over an observa-
ton set. Let p(X| A) and p(X | B) be the provided opinions
where X is a random variable representing an observation. Then,
by LOP

pX=x| AV pX=x| B

i(X=x{A,B)=
JEA=AAD) T p(=y | AT p =y | BT
vE

where F(X { A, B} is the aggregated opinion and C is the whole
observation set. A4 and Ap are the pooling weights in aggregation
such that A4, Ag 20 and A4 + Az = 1. ELP 1s motivated by the
faclt that we can treal p(X | A) and p{X } B) in (1) as if they were
separale conditional PD's and p(X | A, 8) as the approximated
joint conditional PD. 1n addition, we cxpand the allowed region
for pooling weights such that A4, Ap 2 0.

Now, for more general formulation, we assume that there are
N conditions, n', 1%, ---, ¥, Let Z!, Z?,---, Z¥ be the random
variables representing éach kind of conditions, By the ELP

F(X=x| ziml‘z:gnz_. .. YZN=T]N211,12.' L Ay)

ﬂp(x=x[z*=~q’1‘f

Ztﬁp(x:_\- | Z/=nf
veri=

where A, is a positive number indicating the pooling weight of the

(2)

ith ¢condition, For notationai brevity, we use vector-like(zow vec-

tor form) notations given as follows.

z=(zlbzz..”.zh‘]'
n=mLn% - .n¥). and
A=(An AL Ay).

Here, A should be obtained such that the difference besween
the (rue joint conditiongl PD and that approximated via ELP is as
small as possibie. Therefore, we need an appropriate measure
with which we can determine distance between two PD’s. One of
mosl natural ineasures is the discrimination informaton which
indicales how far a PD deviates from a reference PD. I we let
p£{Xand g(X) be two PD’s deftned over C where the former is a
reference, the discrimination information between them is defined

by

DEUigY= T pX=niog 2= 3
Let
L) =D(p (X | Z):F X | Z=ni A )

where p(X | Z=n) and /(X | Z=n:1) denote true and approxi-
mated joint conditional PD’s, respectively. The optimal value
Api is obtained under the cntesion that

Aopr = argmin L (A} (5)

where I is the allowed region for A in RY(N -dimensional
Euclidean space). Here. we take I as the whole region where
A, 20 for all i [f, however. some A, is very large. aticntion will
be paid only @ smalt parts of the components in the approximated
Juint conditional PD. For that reason, we (ake T as a restricted

region

F=fA Ok SApae, =12, N /. (6)
Moreover, restricting the region for X as in (6) is much helpful in
seeking hop. Secking A, can efficiently be accomplished by a

feastble direction method or an active set method, which is suit-

able for solving constrained optimization problems|8j.

L. FRAME-CORRELATED HMM BASED ON ELP

Let § be a set of all states and C be a set of all observation
symbois. By ELP, the likelihood of current observation in each
state is evaluated as follows.
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pX=x | ) pXmn | Z=x )™

(X=x| Z=xyy,8) =
P41 250113 y);tpa-yls)‘*p(hylzﬂ,-n‘*

(N

where x, (S an observation Symbol at time ¢ and 5 indicates a stawe
in §. The pooling weights, A, and A, are estimated with given
training data by following the approach in Section 1. As for A,
and k.. we can estimate them for all possible pairs of staie and
observation symbol. But, this may give many unseen pairs for
which we can not estimate pooling weights, Therefore, it is robust
to ctuster all the pooling weights into 3 smaller number of groups.

In (7), p(X=y|[s)is a component of the traditional output
PD in 5 which has been estimated during the conventional HMM
training phase. On the other hand, p(X =y | Z=x,.() represents an
element of the frame correlation PD. It is generally agreed that
the correlation PD highly depends on each phoneme. On this
ground, the use of phoneme-dependent correlation PD’s is known
to be more beneficial than using phoneme-independent ones, If,
however, the amount of training data is not so sufficient for sup-
porting well estimated phoneme-dependent correlation PD’s, one
may have undesirable resulis during the recognition phase. More-
over, since the number of parameters has a close relationship with
robusi recognition, it is desirable to use the same correlation PD
for all phonemes.

Assume that there are N, phonemes, 41, g2, -, gw,, used
as units for recognition. Lel c¢{x,y | ¢) indicate counts of the
event in which current observation is ¥ given that the just previous
output is x and the cument phoneme identity is ¢. Then, the
phoneme specific co-occurrence probabilities for the symbol pairs
can be calculated as

cx,vlg)

pX=x,Z=y | qi) = RICAAE?

for 1<igN, . (8)

Far deriving phoneme-independent correlalion PD’s, it is neces-
sary to sum these phoneme specific co-occurrence probahilities
with appropriate weights as the follewing:

N,
p(x=x.z=y;m)=)f1m.-p(:rxx,z=y|q.-) ®)
where
N,
f{ﬁ).-:l and ;20 for FSisSA,. (10)

Once (9) has been evaluated for each symbol pair, the correlation
PD’s are obtained by the normalizing operation.

Although the simplest way to determine the weights in (9} is
Just using the normalized phoneme counts in the training data, it

has a tendency to concentrate on frequently observed phonemes,
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To compensate Tor this excessive concentration, ong may use uni-
form weights, which are shown 10 be better empirically than the
normalized phoneme counts. Here, we suggest a new method to
obain phoneme-independent comelation PD's when we are given
phoneme specific co-occurrence counts. Our method is based on
the principle of maximum entropy, which is one of most fre-
quently adopted strategies whenever one does not have any a
priori information about the unseens. By the maximum éntropy

principle, we estimate the weights such that
[ =arg;na.rH(p(X,Z;w)} (11)

where

H(p(X.Z;(a)}=—,%§p(X#.Z=y;w}!og,g;(I=.x.Z=y;u).
{12)

We can follow the procedure similar to that in Section II for reach-
ing & except for the additional equality constraint that the sum of
weights is 1. The feasible direction method involving equality
constraints is also described in (8],

From Bayesian point of view, we can consider
P X | Z=x,.1,5) as if it were the a posteriori PD when the a priovi
is p (X | ) with observation x,_; ai time 1. Generally, in speech
signals, p(X | Z=x;.;) is with low eniropy, which means that it
has the shape of high peaks and deep valleys. Thus, the a pos-
teriori, g(X | Z=x;-1, s ) may also resemble this low enwropy shape,
which shows high possibilities of rejecting unseen data in the
recognition phasc. We propose a new method to controi the con-
tributions of the a prioti and the a posteriori PD’s, which requires
only slight modification to the conventionral HMM recognition
scheme. Our method is based on the well-known codebook
exponents[9). Let p,(X) and p,(X) denote the a priosi and the a
posteriori PD’s, respectively, defined over an observation set C.
Then, the combination of the a priori and the a postetiori PD's
becomes

PX=t;Wy=p;(X=x* p(X=x* .xeC (13
where § = (J;, 4, ) denotes the exponent of each PD such that
Hi +Po=1 , 08,4, S1. {14}

Suppose that 2 word w is realized by an output symbol string, v,
¥3 v, ¥r and we <oncern only the most prominent state
sequence when evaiuating word prebability. Then, given a word
model M with the prion-posteriori combination shown in (13) and
w, we can find the most dominant state sequence, $), §2, ** -, 7.
With the determined state scquence, the word probability is

represented as
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Priw|M.n}=D ,jp(x%'ﬁ 15 P(X=p1 | Z2ypoio 5, P2(15)

where D is the state sequence probability depending on 5, £,
+-+, st and yp denotes the initial pull output.

The estimation of exponents is based on the MMI criterion
which has been widely used for enhancing the discrimination abil-
ity of parameters for recognitionf9]. L&t w denote a word in the
training set, U, and M, be 2 model corresponding to w. Then, the
objective function to be optimized under the MMI criterion is
defined by

Pr(wi M, p)
2 Pr(w | Mgy )

Iy = w]lj % (16)
where M;,) is a model which gives the i th highest score for w .
To maximize f{u) with respect to §, we take the approximated
version of Baum-Weich algorithm, which is shown to be effective
for optimization with a rational type of objective functons(10].

IV. CONTINUOUS SPEECH RECOGNITION

A. Baseline Recognition System

The vocabulary consists of 102 Korean words representing
month, day, date and time. In the vocabulary, there are many
confusable word groups in which a word is different from others

by only a smali numoer or phonemes. 9 speakers(43 males ar
47 females) urtered 20-X) sentences to construct the database used

for raining and evaiuation. Utterances from 70 speakers(33 males
and 37 females) constructed the training data in which there were
1631 scatences and 5122 words, and (hose from the other 20
speakers were used to form the test data containing 439 seniences
and 1448 words. Each utierance was low-pass fillered with a cut-
off frequency of 4.5 kHz and digitized with 4 sampling rate of 16
kHz. We used twelfth-order linear predictive coding(LPC} cep-
stral coefficients and differenced LPC cepsiral coefficienls as the
feature vectors, and extracied them in every frame of 10 ms. Two
separate codebooks were conseructed such thal the number of
cadewords is 256 for each codebook.

27 phoneme models involving silence model were used as
the basic units of recognition. Each unit was modeled by a three-
state discrete HMM which is a simple lefi-(o-right model without
skipping. All the HMM parameters were trained according to the
maximum Likelihood(ML) criterion using the segmental approach.
In order to avoid difficulties arising from zero probabilities, we
interpolated the trained output PD's with uniform PD. For this,
we divided the training data into (w0 blocks sa as to keep separale
counts on each block, and then carried oul deleted
interpolation(DI) with five ranges of counts. Word recoguition

rate of the baseline system without frame correlation was shown
be 73.0 %.

B. Experimental Results for Frame-Correlated HMM

We compared the recognition accuracies of frame-correlated
HMM with various types of phoneme-independent frame correla-

tion PD's. First, we 51 the pooling weights such that (A, % ) =
{1, 1) for all the pairs of state and output symboi, which truly is

the case of BC HMM. The frame comelation PD’s were obtained
independenily for each parameter set based on the training speech
data.

Theee different methods for weighting the phoneme specific
courts were anempted: natural, wniform and maximum entropy-
based weights. Natural weights indicate that we use normalized
phoneme counts per frame observed in the training data while uni-
form weights mean that equal weights are given to all phonemes.
Maximuta entropy-based weights were derived with the feasible
direction methed accompanicd by an equality constraint as well as
by inequality conswraints, For comvenience, we note the
phoneme-independent frame correlation PD’s with these weights
by FC,, FC, and FC, . respectively.

Recognition results for the BC HMM are shown in Table Iin
which the result of baseline system witout frame ¢orrelation is
also shown for the purpose of comgparison. Word recognition
accuracy of the BC HMM with FC, was 72.7 % which was
slightly lower than that of the baseline in which frame correlation
was nol considered. On the other hand, BC HMM with FC, and
FC, roduced the word error rate of the baseline by 3.0 % and 5.9
%, respectively, From these recognition fesults, we can see that
FC, outperforms both FC, and FC,. This demonstratcs that
when incorporating frame correlation PD’s, it is needed to flalien.
ing the shape while maintaining valuable information inherent in
them.

Next, we used different pooling weights for each phoneme,
All the experiments were conducted with FC, which yiclded the
best result in the case of BC HMM. Values of the pooling weights
were chosen such that they minimized approximation errors of the
ELP within the given training data. During the optimization pro-
cedure, we set Ap,, = |, which was fater found suitable since
opumal pooling weights fell inside the defined region in most of
cxperiments. 'We denote the derived values of pooling weights as
MELP).

Table 11 shows the recognition resutt with AMELP). Word
recognition rate with A(ELP) was 71.6 % which was lower than
that of the¢ BC HMM by 3.0 %. That the recognition performance
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was even worse than the baseline without frame correlation is
rather surprising. After careful examination, we have found that
the performance degradation with MELP) are caused by two rea-
sons. One is that derived values for A, is usually smaller than A,
for each phoneme, which may cause losing in discriminating capa-
bility of state-specific output PD’s. The other is that joint condi-
tional PD’s estimated in the raining data are 00 sparse to get reli-
able pooling weights.

Performance improvements of the frame-correlated HMM
with phoneme-dependent pooling weights were achieved in three
steps. In the first step, we set A, = 1 and only A, was searched for
each phoneme. Values for these pooling weights are denoted by
MELP1). With MELP1), the word accuracy was improved «©
75.1 % which was higher than that of the BC HMM ﬁy 05%. In
the second step, we smoothed the estimatex joint conditional PD's
in the waining data. For this, we interpolated each PD with its co-
occutrence smoothed one by using the DI technigue. Pooling
weights were derived based on these smoothed joint conditional
PD's, and they are denoted by A(ELP2). Word accuracy with
MELP2) was 75.7 % which reduced the recogaition error of BC
HMM by 4.3 %. In the last step, we sei the pooling weights by
MELP 2y and applied the priori-posteriofi combination mentioned
in Section IIf. Exponents were separately estimated for each out-
put symbol based on the MM criterion. When applying the MMI
criterion, we took only three candidates of highest score into con-
sideration with the belp of the N-best search algorithm, MELP 2}
with priori-posteriori combination yielded the word recognition
accuracy of 76.7 %, which resulted in reducing the ercor rate of the
baseline without frame correlation by (3.7 %.

V. CONCLUSIONS

in this paper, we proposed a novel method o incorporate
frame cofrelations into a conventionai HMM-based recognition
system, With the proposed ELP, a joint conditional PD can be
expressed in terms of separate conditional PD's associated with
respective compaonents. The convexity propetty of the approxima-
tion error function enables 10 guarantee the existence of global
optmum pooling weights, and the feasible direction methad is
applicd to seck them. We also suggested two lechnigues for appli-
cation of the ELP o practical word recognition. When censtruct-
ing the phoneme-independent frame correlaticn PD’s, we infro-
duced a scheme of adding phoneme specific counts with weights
that maximize the decided cntropy. In addition, we presented a
way to combine two kinds of PD's via the use of exponents, which
are estimated under the MMI criterion for the purpese of improv-
ing the discrimination capability. We evaluated sthe performances

o) 0 GAEA QY AR PN QXM SCAS-11Y 12)

of the frame-correlated HMM through speaker-independent con-
tinuous speech recognition experiments, and conclude that the
proposed methods are efficient in practical applications.
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TABLEI
RECOGNITION RESULTS OF BC HMM
WITH VARIOUS FRAME CORRELATION PD°S

ereor rate(%)
cormelation PD accuracy(%)
INS DEL SUB
FC, Lé 0.2 255 727
FC, 1.0 0.3 249 73.8
FC. 1.0 0.3 24.1 74.6
baseline 1.0 0.7 253 730
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TABLE [I

RECOGNITION RESULTS OF ELP

WITH PHONEME-DEPENDENT POOLING WEIGHTS

error rate(%)
weights accuracy(%)
INS DEL SUB
MELP) 1.0 0.5 26.9 71.6
MELP 1) 1.0 03 236 75.1
MELP2) LG 04 229 757
MELP 2) with 1.2 04 21.7 76.7

pri-post combination




