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Oscillation Phenomena of the discrete Optimum Solutions and control

22 AzF" e o] %™
Choi, Chang-Koon Jin, Ho-Kyun Kim, Jong- Soo Lee, Hwan-Woo

ABSTRACT

In the discrete optimum design, occasionally, the solutions oscillate between the
feasible and the infeasible resions during the series of redesigns of members with
discrete sections, This phenomenon may be caused inherently by the discontinuity of
variables of commercially available sections in the database, In this paper, in-depth
investigation into the oscillation in the discrete optimization and its control has been
conducted. When the structure is optimized through element optimization, the oscillation
can be divided into two categories, local and global oscillations. An algorithm which
controls these phenomena is suggested and numerical examples demonstrate the oscillation

in optimum solutions and the effectiveness of the control strategy suggested here.

1. INTRODUCTION

In most of the previous structural optimization problems[1-3], the solutions (optimal
designs) were obtained based on the assumption that design variables are continuous. AS
many of the practical structures are composed of members of commercially available
sections due to the economical efficiency and standardization, the continuous solutions
can not be applied directly to such structures. The design of steel building frames using
rolled sections is a typical example of that kind. Therefore, the discrete optimization
techniques applied to the structures composed with standard sections have drawn a lot of
investigator’s efforts lately to obtain the optimal solutions in the specified member
sizes for practical applications[4-5].

Most of such techniques, however, are not widely used in the practical problems yet
since the stability, convergence and efficiency of the methods can not always be
guaranteed when they are applied to the structural optimization problems of a large number
of variables. In order to get rid of these difficulties, an optimization technique was
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developed for steel structures which are built with commercially available sections[6]. In
this algorithm, the imposed constraints are decomposed into two levels, namely, element
(component) level and structural level constraints. The optimal solution is first sought
in the problem formulated with the element level constraints. Then, the structural level
constraints are imposed,

The solutions obtained by the discrete optimization process may be inherently
oscillatable because the intervals of available section variables are not generally equal
and the safety margins of sections may be different from member to member, Some of the
members may have so little safety margin that the section selected in the next step may
fall into the infeasible region. A series of redesigns of these elements may cause the
solutions to go back and forth between the feasible and the infeasible regions as the
iteration continues,

In this paper, in-depth investigation into oscillation in the structural optimization
through element optimization is carried out and the methods of its control are discussed.

Oscillation is discussed in two categories, i.e., local and global oscillation,
2. CHARACTERISTICS OF OPTIMUM DESIGN WITH DISCRETE MEMBER SIZES
The optimum structural design problem in this paper may be defined as finding a

design variable vector b that minimizes the objective function(the total weight of the
structure) in the following form :

Wom SWLALD) (1)
satisfying

h(suw)= K(b) U- P(b) (2)
subjected to element level constraints

v (bu) <0 (3)

v (b) <0 (4)

be T (5)
and structural level constraints

¥ (u) €0 (6)

where b = design variable vector, n~Ng = total number of elements, w;, L: and 4, = weight
density, length, and cross sectional area of ;-th element, respectively, h(bu) = state
equation(equilibrium equation in finite element method), U = state variable vector(n
nodal displacements), u = elements of U. K = (n x n) structural stiffness matrix, P

= load vector(n nodal loads), ¥’ = stress constraints, v’ = constraints on the nodal

displacements, ¥’ = design variable constraints, such as predetermined flange widths

and beam depths, etc., and T = section table, The design variable vector b in this
study must be found in T. It is noted that the element level constraints are the stress

and design variable constraints and the structural level constraints include the



structural displacements and natural frequencies of the structure.

With the constraints decomposed as above, it was possible to maximize the combined
merits of the optimal criteria method and those of the gradient projection method.
Wheareas the former is used quite efficiently for structural optimizations under stress
and design variable constraints, the latter is useful in obtaining the design directions,
i.e., how the current member sizes should be changed to obtain better local behavior of
constraint functions, particularly the displacement constraints. An algorithm using above

concepts is found in [6]
3. OSCILLATION PROBLEMS IN ELEMENT OPTIMIZATION
3.1 Convergence of General Optimization Process

In the optimization process with discrete variables, it has been generally observed
that the convergence process can be divided into three phases: the initial optimization of
the objective function (upper bound or lower bound) is the first phase and subsequently,
the adjustment phase for the convergence is followed by the final convergence phase. These
three phases may appear repeatedly when

there are multiple local optimum points et T R —————
and a certain phase may be omitted

depending on the initial design and the %

step sizes in the subsequent redesign. § feasible reglon
Fig. 1 shows a typical model for the k] /\\ o :9' g &
desirable optimization process with P \/ i

discrete variables. The continuous infeasible region

optimum solution (design) may define the
boundary between the feasible and the
infeasible regions if the objective Fig.1. Example of desirable optimization process

lterations

function is linear and the discrete
optimum solution is near the continuous optimum sclution, If the optimization process is
carried out as shown in Fig. 1 in which the solution has converged from point A to point

B=B'=B"=B""" after some adjustments. Occasionally, however, the process dose not
converge to a correct solution but gives alternately feasible and infeasible solutions.
This oscillation may occur in the discrete optimization process under element level
constraints, i.e., the stress and design variable constraints, as defined in [6].
Therefore, caution must be used in the problem of oscillation and control of oscillation
becomes necessary during the discrete optimization. Otherwise, either the converged

solution can never be obtained or an incorrect solution may be obtained,
3.2 Local Oscillation Phenomenon

Some of the members in a structure may continually oscillate between feasible and
infeasible regions under the imposed element level constraints during the iteration and
the designs of such members may alternate between two sections a few steps apart in the

section table. These members are called rascal members in this study. When some rascal



members oscillate continuously in the convergence phase, the optimal solution can not be
obtained and the optimization process will never end. This is called local oscillation in
this study, as it is pertinent only to member design. It may also result in oscillation of
objective function and the optimum design satisfying the imposed constraints may never be
obtained,

To explain local oscillation graphically, two independent design variables, i.e., two
individual members in a structure, which are imposed by one stress constraint which is
linearly proportional to the design variable are assumed, Such an example of idealized
local oscillation is shown in Fig. 2.a where the intersection points of the grid indicate

the combination of members assembled with discrete sections in the section table. Here, b}:

means the ith member in the structure with the jth section in the section table and ¥(b')

means the maximum allowable stress for member b’ obtained by the reanalysis after the

member design. As members in the indeterminate structure are dependent on each other, any
change in member size causes the stiffness redistribution and the allowable stress level

is also shifted from ¥4 to ¥° corresponding to the allowable stress level at point A

and C, respectively, as shown in Fig. 2.a. Fig. 2.b shows the variation of objective

function as the iteration continues,
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If optimization is reached at point A in Fig. 2.a where the design variable b and
b?® are selected to be the (j-1)th and the jth sections in the section table,
respectively, point A will be found to be fall into the infeasible region after the new
allowable stresses of these members are obtained by the reanalysis. The search for a

better solution will change the section of member b' from the (j-1)th to the Jjth section
in the section table and that of member A% from jth to the (j-1)th section in the section
table, thus making point C a new design. If the allowable stresses are changed from pA
to ¥° because of the redistribution of stiffness as the result of reanalysis for point C
as shown in Fig. 2.a, point C will fall into the infeasible region and the redesign for

better solution at point C will result in changing back to point A again. Therefore, the

subsequent optimization process will oscillate perpetually between point A and point C

as shown in Fig. 2.b. and the sizes of members b! and b° are alternately selected at some

interval in the section table. As a result, the design satisfying the imposed constraints
of all members during the oscillation will never be obtained as shown in Fig, 2.b, This
phenomenon is the local oscillation and these members involved are rascal members. Because
of this oscillation of rascal members, the objective function may also oscillate. Instead
of simple oscillation ( A — C - A — C ), a more complicated type of oscillation ( A —

- C—> ... > A—> . C)will also be possible. The feasible design of this case
during oscillation may never be obtained unless some way of controlling oscillation is
found,

3.3 The Control of Local Oscillation

If either the member b° or b! is in the feasible region, i.e., at point A or C,
and the solutions alternate continuously between points A and C, holding the jth
section at a certain iteration, i,e., not allowing to be changed to the (j-1)th section,
may bring the rascal members well under control. Expanding the above concept, the local
oscillation may be controlled by imposing a lower limit of the section in the section
table which any oscillating section will never be allowed to reach again. In other words,
once the lower limit is imposed for each rascal member identified, the member is
constrained to be designed to have a larger size than the lower limit imposed in the
following iteration. Fig. 3 shows how imposing a lower limit can control the local
oscillation, Suppose the solution is found to alternate between A and C, and at certain
iteration, an improved (optimum) solution is sought from A, C will again be obtained as
the next solution in the following iteration if no constraint is imposed, and vice versa.
If, however, a constraint (limit) is imposed so that the solution can not reach C again

in the following iteration, B will be obtained which is the converged solution instead of

C for the next solution.



3.4 Global Oscillation Phenomenon and its Control

When the objective function
approaches the converged optimal value,

there may be  another type of

oscillation, i.e., oscillations of the =
. . . . feaslbl !
objective function, This may be caused (a) f centioss eosble region
. S Sl /\\ 8 g
by one rascal member (continuously k] v V;AV,A"O,,
A A

oscillating) or a group of rascal foosbie region

members (discontinuously oscillating)
during iterations, Fig. 4 shows the Iterations
typical patterns for oscillations

discussed in the above paragraph. The
oscillation pattern of Fig, 4.a may be
caused by one rascal member and that in =
o
Fig. 4.b by a group of rascal members ®) ] N R feasble reglon
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c
oscillation in this paper. mfwfu. region
The control of global oscillation _
lterations
is easier than that of local
oscillation. In ‘this study, global Fig.4. Examples of global oscilation

oscillation is controlled by terminating of the objective function

the iteration at the minimum objective
function which has been repeatedly met
previously during the iterations. In
Fig. 4, optimization  process is Vertical Loads
300 kg/m?

terminated at point B’.

3m ral_Logds

X direction 1440 kg
Y direction 2400 kg

4. NUMERICAL EXAMPLE

This example shows local

oscillation and its control. The Fig.5. Eight member frame

structural configuration and loading

conditions are shown in Fig.. 5. The t

material properties are as following 8600

Young’s modulus = 2. lxlOekg/cmZ, weight ;‘f 6200

density = 0.0079kg/cr’, the allowable g o800t

stress = 2400kg/cn’. The standard 2 swor o ot con
sections available for the design are g So00r —a— With Control
listed in Table 1 and the results - 4500‘ :f::::::::m
obtained for this example are given in E I B S S S S e

Table 2 and Fig. 6. The members marked i Iterations

as * in Table 2 are found to be in the Fig.6. Optimization for eight member frame

infeasible region when reanalyzed.



As shown in Table 2, members 1~6
oscillate between the feasible and the
infeasible regions. These members are
selected alternately at some interval in
the sequence of section table (between
sections 26 and 28 in columns and
sections 76 and 82 in beams) after the
second iteration and the patterns of
oscillation in the second, third and
fourth iterations are repeated again
from the fifth iteration, i.e., the
second design results are shown
identically at the fifth iteration and
so on. This is local oscillation, as
defined in the earlier sections, and
members 1~6 are rascal members.

To bring the oscillation under
control, - the control option should
become effective at the second
iteration, After the second design and
reanalysis, the rascal members 3~5 in
the infeasible region are identified and
lower limits are imposed to design these
members with section sizes greater than
the imposed limits after the third
iteration. After the third iteration and
reanalysis, another rascal member, i.e.,
member 6 is in the infeasible region.
This member is also brought wunder
control after the fourth iteration, The
solutions then converge to the optimum
value as shown in Table 2, the converged
minimum weight being 6049kg. This
optimization process is shown in Fig. 6
and the line with circles indicates the
optimization process without control and
the line with triangulars the controlled

optimization process.
5. CONCLUSIONS

Oscillation of the objective
function which occasionally occurs in
the discrete optimization process under
element level constraints, i.e,, the

stress and design variable constraints,

Table 1, Available sections
HC Group(columns) HB Group(beams)
No I(cm*) Alem®  Zem®) | No Icm*) Alcm®  Zem?)
1 28800  s121 3300 | 51 1870 1185 375
2 47200 6353 4726 | 52 4130 1684 66.1
3 49800 7153 4980 | S3 6660 1785 88.8
4 65300 8369 6280 | 54 10200 2684 1380
s 87900 8206 7200 | S5 12100 2304 1390
6 99300 8470 8010 | S6 15300 2965 1810
7 108000 9218 8670 | 57 15800 2318 1600
8 115000 10470 9190 | S8 18400 2716 1840
9 169000 10770 11500 | 59 26900 390! 2770
10 188000 11080 12700 | 60 35400 3268 2850
11 204000 11980 13600 | 61 40500 37.66 3240
12 215000 13480 14400 | 62 61200 5624 5020
13 234000 13480 15400 [ 63 63200 4083 4240
14 282000 13530 16700 | 64 72100 4678 4810
15 333000 14600 19400 | 65 111000 5268 6410
16 353000 16660 20500 { 66 113000 7238 7710
17 403000 17390 23000 | 67 133000 8336 8930
18 428000 19840 24500 | 68 136000 6314 7750
19 476000 20200 26700 | 60 185000  88.15 11000
20 490000 17850 25200 { 70 200000 72.16  1010.0
21 561000 18680 28500 | 71 217000 10150 12800
2 597000 24140 30300 | 72 237000 8412 11900
23 666000 21870 33300 | 73 287000 8430 12900
24 700000 25070 35400 | 74 335000 9676 14900
25 780000 25490 38400 | 75 337000 12010 17400
26 928000 29540 44800 | 76 387000 13600  1980.0
27 1070000 36180 51200 | 77 419000 10130 16500
28 1190000 36070 55700 | 78 467000 13500  2160.0
29 1290000 42490 60300 | 79 478000 11420 19100
30 1420000 42330 64700 | 80 561000 15740 25500
31 1520000 48900 69500 565000 13130 22300
32 1770000 55410 79000 | 82 604000 14550 25000
33 1870000 52860 81700 | 83 687000 12050 23100
34 2140000 59370 91300 | 84 710000 16350 29100
35 2330000 61200 97400 | 8 776000 13440 25900
36 2420000 65980 101000 | 86 904000 15250 29800
37 2600000 75540 109000 | 87 10290990 10770 33800
38 2980000 77010 120000 [ 88 1030000 17450  3530.0
39 3310000 83870 130000 | 89 1180000 19250 40200
40 3580000 96570 141000 | 90 1370000 22240  4620.0
41 4140000 94290 154000 [ 91 1720000 21150 49800
42 4330000 102400 161000 | 92 2010000 23550  5760.0
43 4720000 118500 176000 | 93 2370000 273.60 67000
44 5510000 121400 194000 | 94 2540000 24340 64100
45 7370000 148800 243000 | 95 2920000 26740 72500
46 - - - 96 3390000 307.60  8400.0
47 - - - 97 3450000 27090 77600
48 - - - 98 4110000 309.80 91400
49 - - - 99 498000.0 36400 109000
50 = - - 100 - = -
Table 2. Local oscillation and its control
for eight member frame
control | et iterations
options | number | ™UH o o0t 34 4w Sh oGh 7 B
design
1 9 28 28 28 *26 28 28 *26 28
without | 2 14 28 28 28 *26 28 28 *26 28
3 19 28 *26 28 28 %26 28 28 *2%
4 % 28 %26 28 28 *26 28 28 *2%
5 59 80 *76 82 76 *76 82 76 *%6
6 7 8 76 *716 8 76 %16 8 716
control | 7 82 0 7 7 0 70 70 70 70
8 91 70 70 70 70 70 70 70 70
weight | 4423 kg 6455 5909 6285 5979 5909 6285 5979 5909
1 9 28 28 28 26 26
with 2 14 28 28 28 26 26
3 19 28 %26 28 28 28
4 2% 28 *26 28 28 28
5 59 80 *76 8 82 82
6 7 82 76 *6 82 82
control | 7 82 7 0 0 70 70
8 91 0 70 70 0 70
weight | 4423 kg 6455 5909 6285 6049 6049

*_; infeasible sections




was defined as in [6]. Besides the minimization algorithm, an oscillation control
algorithm is needed to the successful discrete optimization. Oscillation can be divided
into two types : local oscillation, or oscillation: of the objective function because of
continuously oscillating rascal members in convergence phase, and global oscillation, or
oscillation of the objective function because of discontinuously oscillating rascal
members or one rascal member,

The former can be controlled by imposing a lower limit for the design of the selected
members (rascal members), and the latter can be controlled by ending the iteration when
the minimum objective function satisfying all the imposed constraints is repeatedly met.
Numerical example showed the oscillation control algorithm suggested here can effectively
control oscillation of the objective function and can accelerate the convergence of
optimal solutions,
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