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PIEZOELECTRIC LAMINATED COMPOSITES
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Abstract

A layerwise theory for the dynamic response of a laminated composite plate
with integrated piezoelectric actuators and sensors subjected to both mechanical
and electrical loadings is proposed. The formulation is derived form the varia-
tional principle with consideration for both total potential energy of the struc-
tures and the electrical potential energy of the piezoceramics. The governing equa-
tions of the present theory account for direct and converse effects of piezoelectrics,
and layerwise variation of displacement field through the thickness of a laminate.

I. Introduction

Piezoelectric materials have received considerable attention due to their potential use in
actively controling the elastic deformations of structures. Piezoelectric materials respond
to mechanical load and generates an electric charge, which is called the direct piezoelectric
effect. Conversely, application of an electric field to the material can produce mechanical
stress or strain which is referred to the converse piezoelectric effect. The sensing and actu-
ating piezoelectric elements can be either surface bonded or embedded within the laminated
structures.

One of the earliest studies concerned with piezoelectric plates is the work of Tiersten?.
In his monograph, the basic equations governing the behavior of linear, piezoelectric media
are developed and applied to various wave and vibration problems. Recently, a number of
investigators have considered incorporating layers of piezoelectric materials into structural
systems, providing a means for altering the structure’s response through sensing, actuation,
and control. Bailey and Hubbard® used a PVDF(Polyvinylidene fluoride) polymer as a
distributed actuator for a Bernoulli-Euler beam model. Some other analyses and numerical
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models have also been developed to study cantilever beam with segmented plezoelectric
actuators?®s>,

Lee” presented a formulation of distributed piezoelectric sensors and actuators based
on the classical lamination theory (CLT) for bending and torsional modal control. Wang
and Rogers® developed spatially distributed induced strain actuation model based on
CLT. Tauchert® investigated piezothermoelastic behavior of a laminated composite under
staionary thermal and electric fields. Buckling and postbuckling analyses with piezoelectric
actuator studied by Chandrashekhara and Bhatia® by finite element method based on the
first order shear deformable theory (FSDT). A fully nonlinear theory for the dynamics of
anisotropic plates with piezoelectric layer was presented by Pai et al.’® based on a higher-
order shear deformable theory (HSDT). Tzou and his companion!! presented a multilayered
thin shell model with a piezoelectric layer based on Love's theory.

All the literature above used equivalent single-layer two dimensional theories (CLT,
FSDT, HSDT), which model a multi-layered composite as an equivalent single-layer homo-
geneous plate. These theories are adequate for global response of laminates. In these equiv-
alent single-layer theories, however, the coupling effects coming from material anisotropy
may be overlooked. Furthermore, when the piezoelectric layers are taken into account in the
analysis, these coupling effects become even larger. In this regard, a full three-dimensional
piezoelectric finite element model was developed by several researchers. Among them, Ha
et al.’? implemented eight-node composite brick element based on the total potential energy
of the structures and the electrical potential energy of the piezoceramics. Sunar and Rao'®
considered distributed thermopiezoelectric sensors and actuators by using three-dimensional
finite lement method. Hagood et al.! used extended Hamilton’s principle to derive the gov-
erning equations of coupled piezoelectric laminates and applied Ritz method to solve the
problem. Ray et al.!® considered a piezoelectric plate under cylindrical bending subjected
to sinusoidal mechanical loading and electric potential on the top surface. Robbins and
Reddy'® performed static and dynamic analyses of an isotropic beam using layerwise finite
element model to investigate the piezoelectric behavior of beam structures. However, the
direct piezoelectric effect was not considered in that analysis.

In the present study, the layerwise plate theory!” is extended for laminated composites
with distributed piezoelectric sensors and actuators. The governing equations are obtained
by the application of the variational principle. The present layerwise theory accounts for
direct and converse effects of piezoelectrics, and a linear variation of displacement field
through the thickness of a laminate for each layer.

I1I. Theoretical Formulation
A. Kinematics
An N-layer fiber-reinforced composite plate containing distributed piezoelectric sensors and

actuators is considered. The resulting displacements U, and Us; at a generic point x4, x5, T3
in the laminate are assumed to be of the form:

Ua(xﬁ’x&t) = ua(x[%t) + ¢j(:z:3)ui(xﬁ,t) ’ (1)
U3($ﬁ,$3,t) = u;;(l'g,t) . (2)

-122-



The usual Cartesian indicial notation is employed where Greek subscripts are assumed to
have values 1 to 2. Superscript j ranges from 1 to N, where N is the number of layers.
The terms u, and uj are the displacements of a point (zs,t) on the reference surface of
the laminate, u/, are nodal values of the displacements in the z, direction of each single-
layer, and ¢’(z) is the linear Lagrangian interpolation function through the thickness of the
laminate which accounts for linear variation of displacement field within each layer.

The strain tensor associated with small-displacement theory of elasticity are given by

€ap = €op + queiﬂ , (3)
Yo = Yoz + s, (4)
where
1
€ap = 5(tap +uga), (5)
o= 5y + ), ©)
Vs =User Vi =l (7)

B. Constitutive Equations,

The constitutive equations of a piezoelectric media are of the following form?® :

€i; = Sijuon + dni; En (8)
-Dm = dmklakl + EmnEn 3 (9)
or, alternatively
0i; = Cijriers — exij Ex (10)
D, = epmpicr + emiEx (11)

where, 0;; and ¢;; denote the stress and strain components; D, are the electric displacements;
E,, are the electric field vectors. Also, S;;x and Cj;ki denote elastic compliances and moduli,
respectively; dmi; and e,;; are the piezoelectric coeflicients; e are the dielectric constants.
As shown in Eqgs. (10) and (11), the piezoelectrics couple the mechanical and electrical
equations. The coupling terms are the piezoelectric constants, e,;; which correlate stress to
applied electric filed, electric displacement to applied strain. The first index in subscripts
refers to electrical axis while the second and third indices are mechanical.

By using the assumption o33 = 0 in the constitutive relation of Egs. (10) and (11), the
following expressions can be obtained for monoclinic materials,

Oap = Qaprwtrw — €3apE3 (12a)
Ga3 = QasﬁB’Yﬁs - eEaIiEﬁ ) (12b)
D, = €75 + a6 s (12)
D3 = €3.5€a8 + €333, (12d)
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where Qupw, €5ap and €35 are reduced quantities defined by

Cup33C334w
Qaﬁvw = Caﬁvw - _%13_3331— ’ (13)
- Cop3sesss
€kap = Chap —’—53333 ; (14)
* 83333
€33 = €33 + . (15)
Cs333

C. Variational Formulation

The general system is composed of an elastic body with inclusion of piezoelectric material
which are poled and electroded arbitrarily. The extented Hamilton’s principle is used to
derive the equations of motion of the present theory!8,

t2

0= (T ~U+W,)— 6W]dt, (16)

5]
where T,U, W, and §W are kinetic energy, strain energy, electric energy and the first vari-
ation of work done by external forces, respectively, given by

1 ..
T:ilﬂuwm (17)
1
U= 5/1101'1'6:'1“1”, (18)
1
W= / D;Edv, (19)
oW = [ fibUidv+ § Ei8Uds + § GéVds. (20)

In the above Equations, p is the density, #; are the specified surface traction forces, § is
electric charge, f; are the body forces (i = 1,2,3), and V denotes electric potential. v is the
volume of the plate and s is the boundary of v on which the tractions are specified.

The electric field is related to the electric potential V' by

E;=-V;, (21)
and the electric potential is assumed to be the following form as for the displacement field:
V(g,z3,t) = v°(z5,t) + ¢ (z3)v" (25, 1) . (22)

Then the electric field vector becomes

E,=E+ ¢E!, (23)
Es = ¢, E5, (24)

where
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E; =—v%,; E] = =’ ; Ej = v, (25)

!a1

Substituting Eqs. (17), (18), (19) and (20) into Eq. (16) and defining specified traction
and electric charge resultants as

(Mo N2) = [ 4.1, ¢7)dzs, (26)
Qs = / ! 7?311303, (27)
2k
(G, ) = / a1, ¢V das, (28)
2k

Eq. (16) takes the following form in the absence of body forces after integrating through
the thickness

t . . . o
o= [ { / [I°(tia 6t + t13btis) + T (6880, + 43 tia) + I 05102
t
- / [Nugbtta,s + N g8ul 5+ Qusbusn + QLybul, — pbusldQ
- /Q [Gu6v%, + GL6v, + Glo'ld0
- Y — 9 _ I §od ds — N800 _ A £y
/F N buads /F Osbusds /F Nigud ds /F Gévods /r Gigv ds}dt, (29)

where p is a specified distributed transverse load and T'y, Iy, I‘3, Iy, ['s are the portions of the
boundary of the reference surface £ on which N,, Q3,N G, G, respectively, are specified.
In Eq. (29), the stress and electric resultants are defined as

j N Zk41 .
[Naﬁv Naﬁ] = kz: /k 0'0,,@[1, ¢J]d$3 y (30)
=1 z
. N Zk+41 .
(Qes, Q2al = 1 / Gasll, $ldas, (31)
1 K
ch, G Z Da[la ¢j]dx3 9 (32)
k=1"%k
i e [ i
3= D3¢sdzs . (33)
k=1"7%k

The inertia terms are defined as

N Zk41 . .
(1P P4 =3 [, 6o (34)

D. Governing Equations
The actuator equations of motion and the sensor equations of the present theory can be

derived by integrating the derivatives of the varied quantities by parts and collecting the
coefficients of §u,, Suz, bu’, §v°, 6v7 :
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Nugp = i + Piil, (35)

Qﬁcm +P I (36)
Nigs— Qla = Piig + I¥iik, (37)
Goo =0 (38)
GL,—Gi=0 inQ. (39)

Eqgs. (35), (36) and (37) are the equations of motion (actuator equations) induced by the
applied load and electric field, while Eqs. (38) and (39) are the sensor equations which relate
the displacements of the plate to the closed-circuit output charge signal. The complete
set of Egs. (35) through (39) ((4 + 3N) differential equations) describes the mechanical
and electrical state of the piezoelectric laminated composite plate in (4 4+ 3NN) variables
(g, uz, ¥l v°,v7) .

The natural boundary conditions associated with Eqgs. (35) to (39) are of the form:

Nogng — Na =0 only (
Qpang—Q@3=0 onT, (
Niﬁng —~N/=0 onTs (42)
Ggng—G=0 onT, (
Gﬁnﬁ—Gj=0 on I, (
where ng is a unit normal in § direction. Recall that I'; through I's complement the total
boundary T' such a way that essential boundary conditions are specified:

Uy =ty on [ —T4 (45)
ug =13 onl —T, (46)
W =4/ onT-T, (47)
v’=9° onl T (48)
v/ =% onl ~T;. (49)

E. Laminate Constitutive Equations

Substitution of Eq. (12) into Eqgs. (30), (31), (32) and (33) gives the constitutive equations
of the laminate:

Nogp [ Aaﬁww Blsyw Liag €,
{N‘iﬁ} = a,@‘vw Daﬁ'vw F;f; { 5:w} )
3 | L%, F:fw Hi3 —~E*
Qa3 Aa3ﬁ3 Ba3ﬂ3 Lgas FﬁaB Y83
a3 — Biags ‘Da3ﬁ3 Lﬁas Fi. ﬁaa ’753 (50)
Gq Laga L’;gs aﬁ E —E; ’ 7
wa L Fiﬁs Ff;as Hiﬁ aﬁ ——Ef,
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Di*

where Augyw, iﬁw, wpvw are the stiffnesses of the laminate and Logs, FiﬁB, etc. are the
piezoelectric quantities given by

. N . -
(Aaﬂ'ywa Biﬁ'yw’ Dilfﬁ'yw) = Z Qaﬂ—yw(l qua ¢]¢k)dx3 ’ (513.)
1
(Aa3/337Bi3ﬁ37 a3ﬁ3 Z a303 1 ¢ ?3¢{?3)dx37 (51b)
(Laﬁ3aLiﬁ3aF§,@37 ﬂa) = Z/ ‘Z%Z» ¢J {3¢k)d$37 (51‘3)
k=1
(Lgaﬁ? Z/ e;gkﬁ) f$¢k)d$3 , (51d)
2k
k+1
(Hag, Hig, HIS) = Z [ e, ¢ 69y, (51e)
33 - Z/ E;,:(sk ¢{3¢kd$3, (51f-)
k=1
where ”—” denotes transformed quantities for each layer.

I1I1. Closure

A two-dimensional, layerwise theory of laminated composite plates with distributed piezo-
electric sensors and actuators is presented. The theory accounts for direct as well as converse
piezoelectric effects, and a linear variation of displacement field through the thickness of a
laminate for each layer. Thus, coupling effects coming from strong material anisotropy
are systematically included in the formulation. Extension to finite element model awaits
attention.
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