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Issues Involved In The Study Of The Voltage Stability of A Power System Network Modeled By DAE
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Abstract

In this paper an attempt is made to understand the voltage sta-
bility when the power system networks are represented by the
differential-algebraic equations (DAEs) form. The problem is
analyzed by interpreting the shape of constraint manifold, based
on the singular perturbation model. The global picture of con-
straint manifold is given to show how the local shape of constraint
manifold can be used to guess for the system behavior. The gra-
dient analysis is used systematically to obtain a local shape of
the constraint manifold.

L Intreduction

The voltage stability problem has become one of the most sig-
nificant challenges in the operation of power system networks,
The voltage stability problem involves both static and dynamic
aspects. Even though there is a fair understanding of the steady-
state voltage stability, there still exists confusion regarding the
interaction of load, g tor and other component dynamics in
the study of voltage collapse [1, 2, 3].

The dynamic formulation requires the ideration of appropri-
ate models for the system P ta. A p ter dependent
differential-algebraic equations (DAEs), eq. 1 and 2, can be used
to study the interaction belween static and dynamic aspects of
voltage collapse.

i = f(z,09) )
6 = g(zv,p). @)

This model usnally represents the dynamic equations of the gen-

* erators and control devices, the stator and metwork algebraic
equations. The underlying dynamics in the algebraic parts are
assumed infinitely fast. Many researchers think that the DAE
models of the power syatem are equivalent to the quasi-stationary
model of the singular perturbation model. Thus within the quasi-
stationary range, the DAE mode! can be used without any re-
strictions. However, the stability analysis, beyond the quasi-
stationary limit, may not be valid with the DAE model. In that
case, we may have to consider the underlying dynamics of alge-
braic parts,

Recently, starting with the work of Venkatasubramanian et al.
[4), the case in which the quasi-stationary condition is violated
have been reported {5, 6, 7]

This paper is an aitempt to carry out a study to understand
the phenomenon involved in the modelling deficiency of DAE
formulation, The same problem is commented on the ref. (8],
The best way to figure ont this aspect is to know the underlying
dynamics of the algebrai tions [4].

In this paper, the instance at which the algebraic Jacobian be-
comes singular is focussed in a view to understand the possible
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system behavior around this operating point. This is possible by
observing the geometrical shape of aigebraic equations in state
and algebraic space, The gradient-analyeis {9] is utilized to sys-
tematically analyze the shape of the constraint manifold. Us-
ing this technique, the critical regions can be identified at least,
around which the underlying dynamics must be considered.

This paper is organized as follows. In section 2, a simple non-
linear oscillator is considered to motivate the difficulty involved
in the analysis of a system which is modelled in DAE form, Sec-
tion 3 describes various issues involved in the power system net-
works modelled in DAE form. When the DAE model is not
valid, it is claimed that the understanding of the local shape of
algebraic constraint may provide the way to guess the system be-
havior. Section 4 clarifies the above issues with a simple power
system example, The global pictures of this constraint manifold
are given to show how the local shape of constraint manifold can
be used to gaess for the system behavior without knowing the
underlying dynamics,

11, Motivation Example

In this section we consider the basic circuit structure of electronic
oscillators. This example has been thoroughly analyzed by many
researches. We use this example to show the difficulty involved
in the analysis of DAE model.

In that exsmple, the oscillator circuit is represented as follows,
2 = ¥ . 3
€27 = =T33z~ z§/3, (4)

where ¢ < ¢ = CL < 1. Here z2 is input voltage (v), and the
li istor has i — v characteristic of A(v) = ~v+v*/3.

Since ¢ < 1, the dynamics of z; is very fast (fast dynamics)
rather than that of 3 (slow dynamics), Figure 1 shows the vector
flows of eq. 3 and 4. On the equilibzium space of eq. 4, which
consists of all the solutions satisfying 57 = 2z = 23 /3, the left
hand side ¢f3 =0 b zexo, Therefore the field is vertical
with respect to the x2 axis. This equilibrium space is also called
slow manifold because only slow dynamics is activated on this
space. Outside this space the vector field is almost horizontal to
=2 axis because the speed of z; dynamics is very fast compared
to zy dynamics. On the branch AB, the system slides down
along the solution space. At point B, the system jumps onto the
branch CD. Once on CD, it moves along the branch DC. The
flow is restriced to the branches AB and DC. BC is unstable
branch. At point B and C, jumping behavi (i.e., the
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system exhibits limit cycle behavior).

As mentioned in the above paragraph, because the speed of the
fast dynamics is usually very high, we concentrate the dynamic
behavior due to zy only.

zL = Z2 (5)




unstable, there is no meaning to extend the analysis to determine
the stability of the slow dynamics. This fact can be conveyed to
the linear analysis of DAE model. Let us linearize the eq. 1 and
2 at certain point (z3,z3) as follows

OEy | _fa b Oz
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If we express &z in terms of Az, thea

Azr=[a—b+ a1t ;:]Azx. 9)

Calculating eigenvalue of reduced Jacobian matzix [a—b+d™* «¢],
the stability is determined, Here the point at which d becomes
zero is the limit of quasi-stationary range. Beyond that limit,
the fast dynamics may be unstable. Thus the reduced Jacobian
matrix is valid only up to the Lmit.

II1. Stability of the power system based on DAE model

For a system defined by DAE, the usual way to determine the
system stability is solving the algebraic equations for y in terms
of z. Possibly, many solutions exist and these solutions are to
be substituted into the differential equations to find equilibria.
Once we have the equilibrium point, the stability can be deter-
mined by using various tools. However, it must be recalled that
the DAE model is an approximation of physical power systems
because the algebraic equations represent the stator and trans-
mission network. In nature, the dynamics corresponding to those
components are very fast and assumed to be steady-state {4]. If
it is true, the DAE model of power systems is valid only within
the quasi-stationary range. This {act can be explained as follows.

Let eq. 10 and 11 are the singular perturbation equivalents of
eq. 1 and 2,

z = f(z,4,p) {10)
‘g g(I, yfp)p (11)

L]

where 0 < € € 1. If we rescale time { to v = 1/, i.e., focusing
on the time frame of fast dynamics, then

dx
dr
dy
dr

[

ef(z.9,p) (12)

g(zl ﬁ‘xp)r (13)

As €~ 0, the set of equilibria for this system is exactly on the
congtraint manifold and the slow dynamics are neglected because
dz/dr = 0. The fast dynamics describes whether the constraint
manifold is atiracting or not. When we have an equilibrium point
{z*,¥"), the fast dynamic behavior near an equilibrium point is
determined by the eigenvalue condition of the Jacobian %1 at
the equilibrium. If all the eigenvalues have negative real part,
then it remains at the (z",4°) in the time frame corresponding
the fast dynamics. To know the entire system behavior, we also
need to analyze the slow dynamics. It is performed as mentioned
above. However, If any eigenvalues have a positive real parts,
then the constraint manifold at that point is not atiracting any
more. In that case, there is no meaning to perform the analysis
to determine the stability of slow dynamics at that equilibrium
point.

If the entive dynamics is known, then the system behavior can
be traced by considering the whole time frame (fast and slow).
In that case, the system may come back to the original equilib-
rium point or it may be attracted to another equilibrium point
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Figure 2: Vector flows of eqs. 5 and 6

0 = w2120 233, (8)

Eq 5 and 6 are called the differential-algebraic equations (DAEs).
This algebraic constraint (eq. 6) defines the solution space which
is same as the slow manifeld defined in eq. 3 and 4. The solution
space defined by the algebraic constraint is called constraint man-
ifold. Figure 2 shows the constraint manifold. The arrows on the
consiraint manifold give the direction of the system movement,
At point B, the tangent to the constraint manifold becomes par-
allel to the xg axis. In that case, it is difficult to predict what
happens at that point because £; can not be moved to the di-
rection as indicated on the constraint manifold. There does not
exist the algebraic solution in that direction at the point B. The
same situation occurs at the point C. We need to go back to the
original differential equations to understand the system behavior

Comparing the DAEs with the full differential equations of this
example, the vector flow of the DAE is same 2s that of the full
differential equations on the branches of AB and CD. Thus if
the DAE is considered, the stabilily information is valid only on
the branches AB and CD, This is called the consistency in the
theory of singnlar perturbations. The condition for consistency
is the local asymptotic stability of an equilibrium point on the
constraint manifold. This is guaranteed by

dh(zz)

7
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The region in which this condition is satisfied is called quasi-
stationary region, 9h({z2)/dz; is nothong but one dimensional
algebraic Jacobian matrix. The point at which the algebraic
Jacobian becomes singular is called impasse point or Singularity-
Induced bifurcation point [4]. At this point consistency condition
(7} is violated.

From this example, it is concluded that DAE model is valid only
if the fast dynamic part is stable, If the fast dynamics becomes



or limit cycle, etc.). If the algebraic Jacobian is singular at an
equilibrium, then it is impossible to trace the system behavior,
without knowing the underlying dynamics of the algebraic vari-
ables. However, the local behavior around the equilibrium can be
guessed by checking the existence of solution of algebraic equa-
tions in the direction in which the system will change by a small
disturbance. This can be achieved by observing the shape of the
constraint manifold. Next section explains how to obtain this
constraint manifold.

1V. A single machine power system example

We consider s single machine supplying power to a load mod-
eled with constant active and reactive power components used
in Chow and Gebreselassie paper [6). They analyzed a dynamic
voltage instability with the variation of active power load de-
mand.

Our analysis is focussed on the load level at which the algebraic
Jacobian becomes singular. This level is the boundary of quasi
stationary range.

Algebraic equations are manipulated to have the state variables
decoupled

Ey = Vi sin(§ = 8) = 0.6706 Pcos(§ ~ 8)/Vi
E), — Vicos(5 — 8) - 0.6706 Pysin(s — 8)/Vy

#

0 (14)
0 {15

At the load Pp = 1.3068, the equilibrium meets the limit of
quasi stationary range. At that point, the tangent space of the
constraint manifolds becomes parallel with the algebraic space.
At this point, the linearized form of algebraic constraints Eq.14
and 15 at an equilibrium point are

Eg ] _[ -1322 1238 AV,
E, ] | 0502 ~0.470 a8

The algebraic Jacobian matrix has eigenvalues X: = 0.000
and Az = ~1.792. The corresponding eigenvectors are: right
cigenvectors {~0.683, 0.730)¢, (~0.935,0.355)", left eigenvec-
tors (~0.355,~0.935), (—0.730,0.683), respectively. Here, ¢ de-
notes transpose of the vector. Using the gradient technique, we
can separate the Jacobian matrix into the matrices corresponding
to each mode as follows,

]

In the above matrices , 1 {1 is very large compared to 1/Xz. So,
we only consider the matrix corfespouding to As.

av; ] _ 1 [o242 o639 ][ By
A9 | =3 | 0259 0683 || B,

It is obvion;! that f;he algebraic space is very sensitive to the
change of E4 and E, which verifies that the equilibrium is close
to the limit of quasi-stationary range. The second column is
much bigger than the first column. Thus ¥, is more dominant
in this mode than the Ej.

a1 _ . [ 0242 0.639
Al = ] 0259 0.683
o 0.683 —0.838
] ~0259 0.242
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Here the right eigenvecior corresponding to the zero eigenvalue
gives the initial direction of the unstable region. The right eigen-
vector corresponding to the negative real eigenvalues indicates
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the initial direction of separatrix. The region in the opposite
direction of the right eigenvector of zero eigenvalue is stable,
i.e., the constraint manifold is attracting. So, any distarbance
which make the system crosses the separairix may lead to radical
change in system behavior.

V. Conclusions

In this paper, we tried to understand the voltage instability at
the instance of the singularity of the algebraic Jacobian matrix,
by using the singular perturbation model. By observing the ge-
ometrical shape of the algebraic equations, the possible system
behavior is analyzed around this operating point. The gradi-
ent analysis is used to systematically analyze the shape of the
constraint manifold.
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