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Currentrisk assessment practices largely reflect the need
for a consistent set of relatively rapid, first-cut procedures to
assess "plausible upper limits” of various risks. These prac-
tices have important roles to play in 1) screening candidate
hazards for initial attention and 2) directing attention to cases
where moderate-cost measures to control exposures are likely

to be warranted, in the absence of further extensive (and

expensive) data gathering and analysis.

Aprablem with the current practices, however, is that they
haveled assessors to do a generally poor job of analyzing and
expressing uncertainties, fostering "One-Number Disease” (in
which everything from one's social policy position on risk
acceptarice to one's technical judgment on the likelihood of
different cancer dose—esponse relationships is rolied into a
single quantity). At least for analyses that involve relatively
important decisions for society {both relatively large potential
- health risks and relatively large potential economic costs or
other disruptions), we can and should at least go one further
step — and that is to assess and convey both a central
tendency estimate of exposure and risk as well as our more
conventional "conservative” upper-confidence-limit values.

To accomplish this, more sophisticated efforts are
needed to appropriately represent the likely effects of various
sources of uncertainty alang the casual chain from the release
of toxicants to the production of adverse effects. When the
effects of individual sources of uncertainty are assessed (and
any important interactions included), Monte Carlo simulation
procedures can be used to produce an overall analysis of
uncertainties and to highlight areas where uncertainties might
be appreciably reduced by further study. Beyond the informa-
tion yielded by such analyses for decision-making in a few
important cases, the value of doing several exemplary risk
assessments-in-this way is that a set of benchmarks can be
defined that will help calibrate the assumptions used in the
larger number of risk assessments that must be done by
"default” procedures.

Introduction

To communicate with some degree of clarity on the
subject of uncentainty, it is necessary to offer some basic
definitions and distinctions from related concepts. In this
paper, "uncertainty analysis” means an attempt to fairly as-
sess and convey how likely it is that the estimated value of a
particular parameter differs by various amounts from the
"truth.” A description of uncertainty, therefore, is a descrip-

tion of the imperfection in knowledge about something that
is conceived of as having some "true" single value in some
inaccessible reality. "Uncertainty analysis” must be distin-
guished from another concept that is also described with the
aid of probability distributions. "Heterogeneity" or "interin-
dividual variability" is the distribution of true values of a
parameter that would be found in a population by perfectly
accurate measurement techniques. For example, weighing a
set of individuals with an excellent scale will not obtain the
same results for different people. People really do differ in

- their weights (and other characteristics that affect individual

risks) and no degree of improvement in the measuring instru-
ment will make them all the same. The difficulties of knowing
the degree of interindividual variability in susceptibility to
toxicants in a population is one factor that contributes to
uncertainties in assessing risks particularfy for noncancer
effects.!

First, some policy questions related to uncertainty
analysis will be discussed, i.e., what is it potentially good for,
and why is this such a touchy subject? This will be followed
by some historical speculations on why many of those who
were brought up in the 1940s to the 1960s and received
technical training in the 1960s through the 1980s find the
prospect of quantitatively assessing uncertainties foreign and
troubling. An extended example will be offered which ad-
dresses the uncertainties in a practical risk assessment con-
text; the example compares potential carcinogenic risks of
drinking water from two sources: an "Advanced Water Treat-
ment” system developed for the City of San Diego and a
particular reservoir supplied from the Colorado River. Final-
ly, some general caveats and warnings are offered about the
"brave new world" of enhanced analysis of uncertainties in
risk analysis.

Uncertainty Analysis: Policy Considerations

A good analysis of uncertainties serves policy goals of
1) "bounding the set of not clearly incorrect answers"® and
2) allowing the reader of a set of risk assessment results to
"make as informed a decision on risk acceptance or control
as if the reader him/herself had gone through the process of
doing the risk assessment."® An appropriate analysis of
uncertainties brings into the open the expected consequences
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of standard summary treatments of uncertainties in different
factors affecting risk, thus allowing greater scope in making
risk control choices from among options that are expected to
limit risk to various extents with different degrees of con-
fidence.

The particular form of expression of uncertain results
that is most relevant for policy-making depends on the legis-
lative mandate of a particular program or type of decision.
Changing the form for expressing uncertainty for specific
regulatory purposes requires careful examination of whether
one is changing the protective posture of the agency in
implementing the intent of the law in question. Legislation
that calls on an agency to "protect public health with an
adequate margin of safety” may well be interpreted as direct-
ing the agency to pay attention to the level of risk that, in the
judgment of agency analysts, will not be exceeded with
relatively high confidence (99% or possibly more); in con-
trast, a statute calling for a cost/benefit balancing may weil
be interpreted as requiring the agency to pay attention to the
mean "expected values" of the distributions of the estimates
of risk and econornic costs.

Ideally, an analysis of uncertainty is not an afterthought
that one gets from the statistician after the rest of the work on
arisk assessment has been completed. It should really be part
of the "warp" and “woof" of each step in the analytical process
that carries some uncertainty (i.e., everything but the arith-
metic and sometimes the arithmetic, too). Thus, among the
reasons this subject is sensitive are 1) it matters to the sub-
stantive protective posture for managing risks and 2) it has
the potential to change the way a substantial number of
technical analysts do their jobs.

Historical Attitudes Toward Uncertainties
in Scientific Information

Many scientists involved in risk issues have some reluc-
tance to attempt to quantify their uncertainties; this may
derive from the cultural assumptions about science that
prevailed when they were growing up and making the lifetime
commitment to become scientists. Recent changes in these
cultural assumptions are a likely source of a feeling among
scientists that the understandings under which they chose
science as a career have been altered, and not for the better.

One popular scientific attitude toward uncertainties
present in the 1950s, when many of today’s scientists were
children, is typified by detective Joe Friday s saying, "Just the
facts, ma’m, nothing but the facts.” Joe Friday was not a
scientist, of course, but we do not recall Mr. Wizard being
uncertain about anything either. A favorite example, how-
ever, is from aclassic early 1950s science fiction movie called
THEM in which giant ants have been produced as the result
of mutations of ordinary ants followirng exposure to radiation
from the atomic bomb testing. This fact is not known at the
beginning, of course. The local police and the FBI man only
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know that people are showing up horribly mutilated and
smelling of formic acid; there is also a strange print cast from
the desert sand near one of the victims that no one is able to
identify. Sending the print to Washington brings, on the return
flight, the stereotypical absent-minded professor who, with
his lovely daughter (also a Ph.D.), proceeds to investigate.
The father and daughter team assemble information but share
absolutely nothing with the local police and the FBI agent
who had called for help in the first place. The reason for their
behavioris quickly explained. They do, indeed, have atheory.
They are, in fact, specialists on ants, and formic acid stings
are evidently the way ants kill. However, they are duty-bound
as scientists not to share their theory until they are certain,
even though giant, man-killing ants may be multiplying in the
desert. Why? Because it might cause panic. One might think
that at least some limited contingency planning might be done
on the basis of tentative information, but apparently this was
not the prescription for scientific behavior in the early 1950s.

In the 1990s, of course, we are expected to deal with
hazards that are a great deal more subtle, with information
that is less complete than was available in the movie about
the giant ants. By today’s standard of conduct, the two scien-
tists in the movie should have said, "Incredible as it seems,
there is a good chance that somehow a colony of giant ants
has developed out there in the desert.” Perhaps they would
even state, "Based on the way that print looks and the cir-
cumstance of the formic acid, we think there may be an 80%
chance that there are giant ants out there. What the other 20%
possibility might be, we can’t guess, but we give the ant
possibility about 0.8."

On pain of usurping the autonomy of the civil authorities
to exercise their authority in representing community
value/policy preferences, the scientist is called upon to dis-
close information of potential social significance while it is
still somewhat uncertain. Hopefully, this is done with as much
attendant communication about the alternative possible states
of the world, and the implications of these alternatives, as
would be helpful in the decision-making process. The scien-
tist must not arrogate the sole authority to make the relevant
decisions. By withholding information on possible states of
the world with potential implications for decision-making,
the scientist would be doing just that.

A Practical Example of Uncertainty Anaiysis

Over the past few years, John Froines and others at
UCLA have been measuring the concentrations of a number
of contaminants in two potential sources of drinking water for
the City of San Diego:

+ The Miramar reservoir (MIRA), which contained
chlorinated water derived from the Colorado River.

+ The output of an advanced water treatment (AWT)
system that recycles sewage.

We considered three different sources of uncertainty in our
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analysis:

« Uncertainty as to which pollutants are actually
present in the two water sources, after taking into
account the measurement difficulties encountered in
the study and the sensitivity with which different
chemicals can be reliably detected.

. Uncertainty in the long-term average amounts of
each carcinogenic pollutant present.

. Uncertainty in the potency of each carcinogenic pol-
lutant for producing cancer in humans, i.e., how
many cases of cancer should be expected per unit of
lifetime average consumption?

The combined effects of uncertainties of the latter two types
for all studied contaminants were calculated with the aid of a
Monte Carlo simulation.

In a Monte Carlo simulation, the combined effects of
different sources of uncertainty are assessed by randomly
drawing values from distributions intended to represent dif-
ferent uncertain parameters that affect risk. For example,
imagine that we are uncertain about both the concentration of
a pollutant in water and the number of cases that might result
per unit concentration (the carcinogenic potency). For each
“trial” of a Monte Carlo simulation, a value is randomly
selected from 1) a statistical distribution that represents our
uncertainty in concentration and 2) another statistical dis-
tribution that represents our uncertainty in the cancer potency.
Together with an assumption about the amount of water
consumed per day or per lifetime, this leads to a prediction of
the cancer risk from that chemical for that trial. By repeating
this procedure for hundreds or thousands of trials, one obtains
a picture of how likely it is that the cancer risk from each
chemical might take on various values. Calculations of over-
all risk from multiple chemicals are added within each trial.

We chose not to include in our first-cut analysis one other
uncertain parameter that directly bears upon the risk: the
amount of water that people consume. All calculations were
for the risk expected if exposed people consumed a standard
2 L of water per day for their entire lifetimes.

Which Pollutants Are Actually Present?

For the most part, the contaminants that were considered
to be present in each water system were those that were
reliably detected utilizing a criterion based on the standard
error of the difference between the long-term average con-
centration in the sampled water and a set of concurrent “travel
blanks.” In our final analysis, we chose to depart from this
procedure in one case. Arsenic, as it happens, dominates the
overall risk for the MIRA water. In order to avoid overstating
the difference in risk that the data could really show between
MIRA and AWT water, we chose to retain arsenic in the
AWT calculations. This allowed us to illustrate the level of
fTSk that might be possible from AWT water if arsenic were,
In fact, present at the levels indicated, even though those
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levels were not sufficient for reliable detection of arsenic in
AWT water. Thus, the way we analyzed and presented uncer-
tainties was affected by the type of intended risk comparison.

Representing Uncertainties in the Concentrations
of Pollutants in the Waters

In many cases, the long-term average values of the travel
blanks were similar in order of magnitude to the long-term
average values of the AWT and/or MIRA water samples.
Because of this, the best expected value for the long-term
average concentrations had to be arrived at by subtracting the
blank averages from the sample averages. When subtracting
two numbers of roughly equal size, the resulting uncertainty
is likely to be best described by a normal distribution. There-
fore, our basic representation of uncertainties in the con-
centration values was a nommal distribution with a standard
deviation calculated from the standard deviations of the
blanks and the sample means.

This needed to be modified somewhat because it made
no sense to allow the distribution of concentrations to take on
negative values. Therefore, in the course of the Monte Carlo
simulations, wherever a negative value would otherwise be
selected from the normal distribution, we instructed the com-
puter to substitute zero.

Representing Uncertainties in the Carcinogenic
Potency of Different Carcinogens

In work previously conducted for the National Institute
for Occupational Safety and Health, we performed a series of
three case studies (perchloroethylene, ethylene oxide, and
butadiene) incorporating pharmacokinetic modeling of the
delivered doses of putative, genetically acting agents or
genetically active metabolites to improve the assessment of
likely low-dose carcinogenic risks.“” One of the innovative
aspects of these studies was attempts to make "best” (or "least
unlikely”) estimates of risk in addition to more usual
"plausible upper limit" estimates. Table I summarizes the
basic approaches used to arrive at these different estimates of
risk. Table II shows the basic comparison of the results of
these more elaborate analyses to the results of more standard,
upper-confidence-limit-only risk assessments by the U.S.
Environmental Protection Agency’s (EPA) Carcinogen As-
sessment Group. ’

As might have been expected, the estimates of the most
likely values of the carcinogenic risk were considerably
below the plausible upper limit values, although the upper
confidence limit estimates of cancer potency were similar
between our studies and those of EPA (Table H). The sum-
mary analysis in Table Il indicates that, on average, the "least
unlikely" estimates of cancer risk in these studies were about
7% of the "plausible upper limit" risk estimates. The lower
portion of Table ITI shows how we reasoned further from this
difference to obtain a likely distribution of cancer potency
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TABLE l. Assumptions for Derivation of "Least Unlikely" and "Plausible Upper Limit"” Cancer Potency

Estimates for Putative Genetically Acting Agents

"Least Unlikely” Estimates

- "Best-astimate,” physiologically based, pharmacokinetic models for estimation of metabolic activation and/or the

persistence of active metabolites in the system.

« Expressionof "delivered dose" as either the amount of active metabolite per (body weight)a’ 4, or the internal concentration
X time product of the direct-acting agent for interspecies projections.

» Calculation of "maximum likelihood estimates” (MLE) of the coefficients of the muitistage model for individual tumor sites,
summed for all sites. But an assumption of a modest amount of background interaction is introduced where the MLE
linear terms (q1s) for all sites are zero to produce a finite low-dose linear term.

« Calculation of the geometric mean of expected low-dose risk as predicted by data from experiments on different species

and genders of animals.
"Plausible Upper Limit" Estimates

» Plausible high-risk-pradicting pharmacokinetic models.

« Expression of delivered dose per (body weight)Z’3 for interspecies projections.
» 95% upper confidence limit estimates of the linear term from a muitistage model fit in the most sensitive species and

gender of animals tested.

estimates that we could use for Monte Carlo simulation
analysis.

‘We began with a basic decision to treat our uncertainties
in this parameter as lognormally distributed; i.e., the log-
arithms of the distribution of likely cancer potency values are
normally distributed, as is illustrated in Figure 1. This was
because in our judgement the different sources of likely error
that contributed to our uncertainties in carcinogenic risk for
individual chemicals (e.g., the relative amounts of absorption
of toxicants in people and rodents; relative rates of elimina-
tion from the body; rates of metabolic activation to toxic
metabolites; and inactivation to safe metabolites, cell replica-
tion, and DNA repair rates in animals and humans) all will
tend to exert relatively independent, multiplicative effects on
the level of likely human risk relative to the risk inferred
directly from animal experiments (which are the source of
most of the cancer potency estimates). The consequence of
multiplying together a series of uncertain parameters is that
the resulting overall uncertainty will tend to be lognormal.
This is because 1) multiplying a series of uncertain para-

meters is the same as adding their logarithms and 2) by the
“central limit theorem" of probability and statistics, the un-
certainty in the sum of a large series of uncertain parameters
takes on the standard "normal” or "Gaussian" form.

Given the choice of the lognormal form, we needed to
determine how likely it was that the true cancer potency for
a given chemical was equal to or above the EPA "plausible
upper bound” cancer potency factor. It is important to under-
stand that the EPA values, although calculated with "conser-
vative" assumptions that are expected to overstate risk most
of the time, cannot be expected to always overstate risk.

« For example, EPA routinely uses the most sensitive
species tested for estimating human risk; however,
in general, where only two other species are tested
(rats and mice), there is nothing to prevent humans
from being more sensitive than the more sensitive of
the two rodents, at least for some modest proportion
of all carcinogens.

- Standard risk assessment procedures that do not use

TABLE Il. Comparisons of Results of Pharmacokinetic-Based Risk Analyses with
EPA Projections of Low-Dose Risks (all data in lifetime risks for occupational
exposure to 1 ppm, 8 hours/day, 5 days/week for 45 years)

"Best "Plausible
(Least Unlikely) Upper Limit

Chemical Estimate” Estimate”
Results from Pharmacokinetic-Based Risk Analyses:

Ethylene oxide 0.0065 0.019

Butadiens 7.9E-4 0.032

Perchloroethylene 6.7E-4 0.013
Results from More Usual EPA/CAG Risk Analyses from Animal Data:

Ethylene oxide Not done” 0.028

Butadiene . Not done 0.098

Perchloroethylene Not done 0.0033

*Implicitly, a best estimate equivalent to a lifetime risk of 0.104 was calculated from two observed
human leukemias in the Hogstedt et al. (1986) study. This is a central tendency estimate because
no statistical upper-confidence-limit procedure was used in computation.
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TABLE ill. Uncertainties in Carcmogemc Risk Estimates for Genetically Acting Agents, as Inferred from

Three Case Studies of PBPK*-Based Risk Analyses

Hattis Hattis Best/ Hattis Best/
Hattis "Best "Plausible EPA UCLE Hattis UCL EPA UCL
Compound Estimate” Upper Limit" cPFe Ratio Ratio
Ethylene oxide 0.0065 0.019 2.80E-02 0.342 0.232
Butadiens 0.00079 0.032 9.80E-02 0.025 0.008
Perchloroethylene 0.00067 0.013 3.30E-03 0.052 0.203
Geom. Mean '0.076 0.072
Geom. Std. Dev. 3.881 6.703
Geom. Std. Err. 2.188 2.999

if we take the EPA UCL estimate of risk as approximately a 95th percentile value (1.6449 standard deviations above the
median), and i, we represent our uncertainties as lognormally distributed about a median estimate at approximately 0.072 times
the EPA UCL, then the geometric standard deviation of the lagnormal distribution representing our uncertainties is

1 o.log(o 724y1. 6449] = 4.93.

APBPK = physiologically based pharmacokinetic model.
UCL upper confidence limit.
CCPF = cancer potency factor.

pharmacokinetic analysis may understate risk if, as
in the case of vinyl chloride, there is a saturation at
high doses in the metabolic activation of the car-
cinogen, leading to a plateau at high doses in the
percentage of animals that develop tumors. If only
the two highest dose points had been available for
vinyl chloride (as would have been the case if the
vinyl chloride data available for risk analysis had
come solely from the usual National Toxicology
Program for chronic animal bioassay), the low-dose
slope of the cancer dose—response relationship
would probably have been underestimated by about
fivefold.

If there are appreciable differences among humans
in overall individual susceptibility, as there seem to

be in many specific parameters that can be expected
to affect susceptibility, this would be expected to
increase the population risks of humans exposed at
relatively low-dose levels relative to what would be
expected for a completely umfonn populauon of

“median-susceptible” individuals.®% This factor is
not included in EPA’s calculations, but it can
routinely be expected to increase low-dose popula-
tion risks to a diverse community of humans relative
to the risks of the relatively uniform groups of ro-
dents that are tested at high doses.

In the light of these various possibilities, we chose to treat the
EPA upper confidence limit (UCL) cancer potency estimates
derived from animal data as the 95th percentile of our dis-
tribution of uncertainties in cancer potency. As listed at the
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FIGURE 1. Log plot of the estimated likelihood distribution for cancer potency factors (CPF) for geneti-
w.l]y acting mmmogens (MLE = maximum likelihood estimate.)
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FIGURE 2. Linear plot of the estimated probability distribution for cancer potency factors (CPF) for genetically acting

carcinogens. (MLE = maximum likelihood estimate.)

bottom of Table III, because the 95th percentile of a normal
distribution is located about 1.64 standard deviations above
the mean, it follows that a lognormal distribution with a 95th
percentile value located 1/0.0724 = 13.8 times above the
geometric mean must have a geometric standard deviation of
about 4.93, or in other words, the standard deviation of the
logarithms of our distribution of potency values is the log of
4.93, or about 0.6931.

Figure 2, which is a replot of Figure 1 on a linear axis
rather than a log axis, illustrates some important properties of
a lognormal distribution. It can be seen that the distribution
is skewed (is asymmetrical with a long tail) to the right.
Because of the asymmetry, the single most likely value (or as
we prefer to term it, the "least unlikely” estimate) is not an
unbiased estimate of the average or mean value of the dis-
tribution as a whole. If one were doing a classic cost-benefit
assessment of various options for control of exposure, it is the
mean, rather than the most likely value, that is the most
relevant parameter for describing the "expected value” of the
health improvements that might be obtained from the choice
of one control option over another. The mean of the distribu-
tion is the average of all the potency values, weighted by their
relative probability of being true (at least as represented by
our lognormal assumption). This was completely missed in a
recent, highly controversial critique of EPA risk assessment
practices by the Federal Office of Management and
Budget.'?’ ‘ ‘

The difference between the nfean and the most likely
value can be illustrated with a gambling analogy. Imagine that
aperson has the opportunity to participate in a lottery at a cost
of $1.00 with a 1/10,000 chance of winning $100,000. The

single most likely value of the return from this wager is zero,
because there are 9999 chances of losing and only 1 chance
of winning. However, the mean or expected value of the
wager is $10.00 ($100,000 « 1/10,000+30 « 9,999/10,000).
Cavear: the "utility" of the wager to a specific person could
be greater or less than $10.00, depending on the person’s
positive or negative enjoyment of the gamble itself, and
whether $10,000 is worth exactly 10,000 times $1.00 in the
person’s own psychic calculus of value.

Overall, as seen in Figure 2, the mean of the lognormal
distribution we have used as our best estimate of our uncer-
tainty in cancer potencies is about 3.5 times greater than the
most likely value, or, in other terms, a little more than 25%
of the original EPA UCL. Thus, if our sparse set of three case
studies is giving us an accurate picture of the general uncer-
tainty in cancer potency estimates, and if the other assump-
tions we have made hold, the best expected value of cancer
risk is only about fourfold less than the EPA UCL. What is
our uncertainty in the original 7.2% ratio that was the result
of our three case studies, and how would differences in this
ratio affect our conclusion that a mean estimate of risk is only
fourfold less than the EPA UCL? Conceivably, other car-
cinogens (perhaps some that do not act by direct genetic
mechanisms, e.g., 2,3,7,8-tetrachlorodibenzodioxin) would
have larger differences between a best estimate of cancer risk
and the EPA UCL. Figure 3 shows the result of assuming a
wide array of different ratios for the 7.2% best estimate from
our three case studies, keeping all of the rest of the reasoning
constant. It can be seen, surprisingly, that as one increases the
distance between the UCL and the best estimate of potency
much below about 6.7%, the ratio of the mean to the UCL
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FIGURE 3. Influence of the MLE/CPF ratio on the "expected value” (mean)
of a lognormal distribution of cancer potency factors (CPF).

starts to rise. This is because one necessarily increases the
estimate of the geometric standard deviation, and below about
the 6.7% point in the curve, the small but increasing
likelihood of very large risks (far over the UCL) begins to
outweigh the reduction of risk in the central/lower portion of
the curve in the calculation of the overall mean.

A final and difficult point of methodology comes when
we consider the small number of carcinogens (e.g., arsenic,
benzene) whose cancer potency estimates are based on
human epidemiological data by EPA, rather than on animal
data. Because EPA estimates from human data are effectively
maximum likelihood estimates, in these cases, we must take
the EPA cancer potency value itself as our best estimate of
risk. In the first simulations, however, we have elected to
retain the same estimate of overall uncertainty as we use for
the animal data. This is partly because, although the human-
based estimates do not suffer from the difficulties and uncer-
tainties inherent in animal-to-human projections, they have
their own peculiar difficulties (especially related to the ac-
curacy of the assessment of past individual exposures, the
healthy worker effect, the effects of truncation of the period
of observation following exposure, and the assessment of the
interacting effects of potentially confounding exposures).
These difficulties may often cause complications and even
downward biases that are as serious as those produced in the
extrapolation of animal data. Because of the importance of
arsenic (whose cancer potency is based on human data) in our
overall analysis, this particular judgment seriously influences
the risk estimates below. We, therefore, also present below
the results of a series of Monte Carlo simulation runs in which
we assume that there is no uncertainty about the EPA estimate
of the cancer risk from inorganic arsenic.

Tables I'V and V give the Monte Carlo simulation results
with and without the assumption of uncertainty in the arsenic
cancer potency value. The Monte Carlo simulations were
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done using "Crystal Ball" simulation software (Version 1.04,
Market Engineering Corporation, Denver, Colorado) for the
Macintosh. Each run consisted of 5000 individual trials.
Shown in these tables are the median, the mean, and the 95th
percentiles of the calculated risk distributions for each chemi-
cal separately, for some aggregates of different chemicals,
and for the total risk. The median is simply the middle value
of each distribution of 5000 values which, if our assumptions
are correct, has a 50% chance of being either larger or smaller
than the true risk. The mean is the average of all 5000 values.
Finally, the 95th percentile (the average of the 250th and the
251st highest of the 5000 values) is the level of risk which, if
we have represented all of the uncertainties appropriately, has
only a 5% chance of being smaller than the true risk. (The
small differences in specific quantities that should be
analogous in these two tables are due to statistical fluctuations
in the results obtained in separate runs of 5000 trials each.)
Comparing the results in the two tables, it can be scen that the
assumption of uncertainty in the arsenic potency has a sub-
stantial influence both on the mean and high-percentile es-
timates of the risk and on the overall uncertainty of the risk
results, i.e., the spread between the median and 95th percen-
tile risks.

These tables give a glimpse of what might be expected
if the "brave new world" of expanded use of Monte Carlo
simulation for analysis of uncertainties ever arrives. One may
well ask how one discusses the risk management implications
of findings such as these. In presenting our work to the
sponsors, we offered the following interpretive conclusions:

"Overall, the risk analysis presented here gives some
reason for concern for the long-term use of the MIRA
(raw Colorado River) water supply, at least to the
degree that the concentrations we measured in the
reservoir samples accurately represent what is likely to
be present in the finished water delivered to consumers.
The overall mean estimate of lifetime risk from 2 L/day
consumption is about 3 cancers per 10,000 people.
About 98% to 99% of this risk is derived from the
presence of inorganic arsenic; uihalomethanes from
chlorination represent the bulk of the remaining as-
sessed carcinogenic risk. (The concentration of arsenic
in MIRA water is well within applicable federal and
state standards; however, at least at the state level, the
arsenic water standards are in the process of being
reevaluated.)

"Our overall MIRA risk estimate is significantly

Awe highlight the mean estimate of risk here because this is the measure of
risk that would correspond 1o the “expected value” of risk, which-might be
used ina cost-benefit analysis. Higher percentiles of the risk distribution {e.g...
the 95th percentile) would increase in importance for those people who wish
to attach extra value 1o modest probabilities that the true risk might be
considerably larger than the estimate of the mean risk.
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TABLE IV. Results of a Monte Carlo Simulation Run (5000 Individual Trials)
of Lifetime Cancer Risks from 2 L/Day Water Consumption — Assuming
that the Uncertainty in the Cancer Potency of Arsenic is the Same as the
Uncertainty in the Potency of Other Carcinogens

95th
50th Percentile Arithmetic Percentile
Data Set (median) Risk Mean Risk Risk
MIRA Water
Bromoform 1.5€E-8 5.4E-8 2.2E-7
Chloroform 2.6E-8 9.5E-8 3.9€-7
Dibromochloromethane 5.4E-7 2.0E-6 7.7E-6
Bromodichloromethane 1.0E-6 3.6E-6 1.4E-5
Subtotal, all .
trihalomethanes 2.5E-6 5.7E-6 2.0E-5
DEHP 1.1E-7 4.4E-7 1.9E-6
Subtotal, all organics 3.0E-6 6.1E-6 2.1E-5
Arsenic 7.7E-5 3.0E-4 1.1E-3
Total 8.4.E-5 3.1E4 1.1E-3
AWT Water
DEHP 2.0E-7 7.8€-7 2.9E-6
(Arsenic)* 3.4E-6 . 23E§ 9.1E-5
Total 4 .3E-6 2.4E-5 9.2E-5

*Caveat Arsenic is not present in AWT water in amounts that are detectable with any
confidence or reliability. Thesa results are shown to illustrate the limitations, in terms of overall
risk, of the chemical detection system for arsenic.

TABLE V. Results of a Monte Carlo Simulation Run (5000 individual Trials)
of Lifetime Cancer Risks from 2 L/Day Water Consumption — Assuming that
there is No Uncertainty in the Cancer Potency of Arsenic®

50th Percentile Arithmetic 95th
Data Set (median) Mean Percentile
MIRA Water
Bromoform 1.6E-8 5.1E-8 2.0E-7
Chioroform 2.0E-8 1.0E-.7 3.8E-7
Dibromochloromethane 5.2E-7 1.8E-6 7.0E-6
Bromodichloromethane 9.9E-7 3.8E-6 1.4E-5
Subtotal all
trihalomethanes 2.4E-6 5.7E-6 2.0E-5
DEHP ) 1.0E-7 4.3E-7 1.8E-6
Subtotal, all organics 2.8E-6 6.1E-6 2.0E-5
Arsenic 8.1E-5 8.1E-5 9.6E-5
Total 8.6.E-5 8.7E-5 1.1E4
AWT Water
DEHP 2.0E-7 8.2E-7 3.2E-6
(Arsenicf® 5.6E-6 6.3E-6 1.7E-5
Total 6.3E-6 7.2E6 1.8E-5

ADifferences between Tables IV and V for chemicals other than arsenic reflact statistical
sampling fluctuations between different simulation runs of 5000 trials each.
Caveat. Arsenic is not present in AWT water in amounts that are detectable with any
confidence or reliability. These results are shown to illustrate the limitations, in terms of overall
risk, of the chemical detection system for arsenic.
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dependent on an innovative procedure we used to as-
sign uncertainties to cancer potency estimates from
both human data (e.g., arsenic) and animal projections,
as well as our analytical uncenainties in the average
amounts of contaminants present. If the human-derived
arsenic cancer potency value is treated as a point es-
timate — having no uncertainty — the estimate of the
mean risk for the MIRA water falls to 0.9 cancers per
10,000 people.B (The mean risk estimate falls when
uncertainty is removed from the calculation because
the uncertainty distribution is assumed to be highly
skewed (see Figure 2) with a mean that is considerably
larger than the single most likely value.) Regardless of
which of these estimates is deemed most appropriate
for policy-making purposes by the City of San Diego,
the indicated risk is not negligible (under California's
Proposition 65 standards, the criterion for a de minimis
risk is 0.1 conservatively estimated cancers per 10,000
people), although it is not as large as the largest en-
vironmentalrisks that have been identified to date (e.g.,
lung cancer from radon progeny in houses and from
environmental tobacco smoke).

"By contrast, the water that we sampled from the
AWT system does not have enough arsenic to be reliab-
ly detected. Nevertheless, our risk calculations indicate
that even if we make the assumption that arsenic is, in
fact, present at levels that, due to analytical insen-
sitivities, might be present, the AWT water poses a
mean risk that is tenfold lower than the MIRA water. If
we base the risk assessment for the AWT water only on
those chemicals that were reliably detected, the indi-
cated mean estimate of lifetime risk is slightly less than
I cancer per 1 million people.”

Conciusions and Caveats

The extended example above illustrates that it is possible
to provide some expanded insight into the range of "not
clearly incorrect answers" for risks, taking into account mul-
tiple sources of uncertainty, and without a great deal more
work than is usually done in more conventional "screening"-
type risk analyses, such as those currently done for Superfund
sites. Of course, the present analysis could have benefited
from a far more systematic study of uncertainties for in-
dividual cancer potencies in the light of specific toxicological
information for particular chemicals, a more adequate repre-
sentation of the delivered dosage of water contaminants due

) BA more conventional calculation, wtilizing simply the basic EPA cancer
potency factors without modification, yields a lifetime risk of about 1.3
cancers per 10,000 people. These cancer potency factors are something of a
mixed group, in that implicitly the arsenic and benzene values, derived from
human data, are central tendency values, whereas the potency estimates
derived from anifial data (62§, chloroform) are upper confidence limit values.
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to multiple routes of exposure from water (e.g., dermal,
inhalation), and some other factors. Nevertheless, we feel that
this level of analysis does offer some improvements in the
information provided to decision-makers for a modest incre-
ment in analytical efforts.

Of course, no analysis of the combined effects of multi-
ple sources of uncertainties can be better than the accuracy of
the individual estimates of component uncertainties that are
fed into the simulation. Arriving at appropriate descriptions
of these component uncertainties is by no means atrivial task.
In this regard, we have previously offered!? three tongue-
in-cheek "laws” of uncertainty/variability analysis that
should inject a final note of the need for due skepticism here.

1. Nearly all distributions look lognommal, as long as you do
not look too closely. (One is, therefore, well advised to
reason carefully about the likely causes of uncertainty or
variability in specific parameters and whether this sug-
gests a particular distribution is appropriate.)

2. Any estimate of the uncertainty of a parameter value will
always itself be more uncertain than the estimate of the
parameter value. (For example, fluctuations in individual
data points will generally have a greater influence on the
estimate of a standard deviation than on the estimate of the
mean of the parameter.)

3. The application of standard statistical techniques to a
single data set will nearly always reveal only a trivial
proportion of the overall uncertainty in the parameter
value. (This is because systematic error among data sets is
generally much larger than random error within data sets.)
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