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Abstract—Receiver operating characteristic (ROC) curves have been frequently used to compare
"»robablh(y models applied to medical problems. Though the curves are a measure of the
dlscnmmatory power of a model, they do not reflect the model’s accuracy. A supplemcmary
accuracy curve is derived which will be coincident with the ROC curve if the model is reliable, will
be above the ROC curve if the model’s probabilities are too high or below if they are too low.
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A chinical example of this new graphical presentation is given.
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INTRODUCTION

Receiver operating characteristic (ROC) curves
are popular for evaluating the diagnostic accu-
,;acy of probability models [1-3]. Curves are
"constructed by using probability estimate cut-
points to calculate sensitivities and false positive
rates (1 — specificity). Often two mathematical
‘models are compared by plotting the curves for
‘both and comparing the areas under each of
‘them. When these areas are equal, the models
are assumed to be equally accurate. If the area
under one curve is greater than that under the
other, the model with the larger area is claimed
to be more accurate [1].

The above formulation has several pitfalls.
This article deals with only one of them and
suggests an improved graphical presentation of
da:a from probability models.

ROC CURVES: PART OF THE STORY

A disease d is either present or it is not. An
“etact”™ diagnostic standard is available but is
comxsidered oo expensive or too risky to be
universally gpplied. Therefore, imperfect tests
and data t‘m:iuhc patient’s history and physical

exaritnaiion must be used To estimate the prob-

Bayes’ theorem

~ ability p of disease d. Thus, a probability model

S is used to estimate p:
p=f{x}

where x represents the clinical and test infor-
mation.

Given the same information {x}, two models
/. and f, are to be compared using a group of
subjects whose disease status is known.

p.=/f{x}
=fo{x}.
The size of the group (the number of subjects)
is
T=D+N
where D is the number of patients with disease
and N is the number without disease. The

sensitivity and false positive rate of each model
/. and f, are defined for given cutpoints p. and

2%
Se,=D
FP, =N

p>p

/D
/N

By plotting sensitivity against false positive rate
for the range of cutpoints between 0 and 1, an
ROC curve is generated.
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If the sensitivity of one model /; is higher than
that of the other, £, for the same false positive
rate, then /, is better than f, in discriminating
diseased from nondiseased. It is often claimed
that £, is therefore more accurate than f,, but
this may not be true if accuracy is considered as
the numerical proximity of the probability esti-
mates to the actual disease prevalence in sub-
jects with similar attributes. An example will
show this.

Example

Figure | shows the distribution of probabili-
ties assigned to 100 subjects by two models f,
and f,. Table | gives the sensitivities and false
positive rates chosen so that FP, = FP,. Figure
2 shows the ROC curves obtained by plotting
the data in Table 1.

Table 1 and Fig. 2 show that for most points
of equal false positive rate, the sensitivity of f;
is higher than the sensitivity of f,. If one ignores
the original distributions in Fig. 1, f, appears
more accurate than f,. A glance at Fig. I,
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Fig. 1. Distribution of probability estimates productd by
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Table 1. Sensitivities and false positive
rates derived from distributions of proba-
bilities illustrated in Fig. 1

Se(f,)  FP(f)  Se(f,)  FP(#)
0.98 0.72 1.0 0.72
0.94 0.56 0.98 0.56
0.88 0.42 0.94 0.42
0.80 0.30 0.88 0.30
0.70 0.20 0.80 0.20
0.58 0.12 0.70 0.12
0.4 0.06 0.58 0.06
0.28 0.02 0.44 0.02

however is enough to show why this is not so.
Almost all subjects without disease are given
probabilities higher thai 0.5 by model f,. A
physician using model f, and a threshold prob-
ability of 0.45 to decide on an intervention
would make erroneous decisions 45% of the
time, while a physician using model /, and the
same cutpoint would be wrong only 25% of
the time. Clearly, the ROC curves tell only part
of the story.

THE WHOLE STORY: ACCURACY CURVES

Let us ‘define the expected probability on an
interval Ap for model f, as:

TA,,i=lp‘,

<pa>Ap = Z Ap-
T

Here p,; is the probability estimate of model f,
for patient i and T, is the number of patients
whose probability estimated by f, is on the
interval Ap. The summation is over the same
interval Ap. The expected probability is thus the
average probability according to the model £,
over an interval. Let us define accuracy as the
satisfaction of the equality:

<pa>Ap=DAp/TAp (])
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Accuracy Curves

“for all intervals Ap. Equation (1) can be satisfied
4f and only if

<pa >p>p’ = (2)
%f)r any p’. The motivated reader can easily

yrove this to be the case. Multiplying equation
gZ) by 7,., and dividing by D gives:

n>p/ >y

Tpop:

Z P

D P>P

{D. 3

The summation is over all cases with p,,>p’.

The right side of this equation is just the sensi-

fivity of model /. at cutpoint p’. So:

P>I'

Z Pai

D

@

= Se,.
A similar and analagous equation can be
ferived for the false positive rate:

_Z = Pai)

= FP,.
N a

(4a)

Model £, can be considered accurate only if both
equations (4) and (4a) are satisfied. When this is
the case, a plot of the left side of equation (4)
against the left side of equation (4a) will be
wincident with the ROC curve for f,. By plot-
tmg these quantities on the same axes as the
ROC curve we can demonstrate the model’s
;_qcuracy. Unlike the ROC curve, the accuracy
surve can exceed the boundaries of 0 and 1 if the
mnderlying model is not accurate.

A CLINICAL EXAMPLE

Both Bayesian algorithms assuming indepen-
dence [4, 5] and discriminant functions derived
‘usmg logistic regression [6, 7] have been used to
estimate the probability of coronary artery dis-
ease. We have shown that when the latter are
denved from the same population, they produce
probabllmes that fit the observed disease preva-
lence more closely than do the Bayesian models
derived partly from the literature on diagnostic
testing for coronary disease and partly from the
test population [8]. Specifically, we have tested
two models. The first is obtained by the sequen-
tial application of Bayes' formula:

(%)
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This was applied using an « priori probability p,
obtained from literature tables of disease preva-
lence in subjects of different ages and genders
and with various types of chest pain. The sensi-
tivities and false positive rate (Se; and FP,) of the
exercise electrocardiogram, exercise thallium
scintigraphy and fluoroscopy were obtained
from a random sample of 162 subjects (training
set). These and the a priori probabilities p, were
applied in equation (5) to calculate the post-test
probabilities of another random sample of 141
subjects from the same population (test set). For
comparison, logistic regression was applied to
the training set and a discriminant function of
the form

e (6)
6

=) X, . @)
1=1

was obtained and applied to the test set. The
coefficients C; represent the various weights of
the variables of age, sex, type of chest pain,
exercise ECG result, thallium scintigraphy re-
sult, and fluoroscopy result.

ROC curves and accuracy curves were con-
structed from the Bayesian and discriminant
function probabilities of the test set. These are
illustrated in Fig. 3. Note that the two ROC
curves are almost coincident. We have shown
that the curves are not significantly different
from one another [8]. The accuracy curve for the
discriminant function is coincident with its
ROC curve, indicating that this is an accurate
model. The accuracy curve for the Bayesian
method lies apart from and higher than its ROC
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Fig. 3. ROC and
and discriminant function models when applied to clinical

accuracy curves (AC) for Bayesian
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curve, showing that this model overestimates
disease probabilities.

Using a different approach, we have already
demonstrated that the discriminant function
does fit the observed data better than the
Bayesian model [8,9]. The accuracy curves
confirm this finding.

The accuracy of probabilistic prediction can
also be compared using various indices [10].
These numbers give a general, overall picture of
a model’s reliability but fail to provide informa-
tion concerning the relationship between accu-
racy and discriminatory power. The ROC curve
and accuracy curve together can perform this
latter function.

Various methods have been derived for com-
paring ROC curves [11-13]. Though we have
not proposed a method of comparing accuracy
curves, the examples from the simulated and
clinical data support this approach.

The ROC curve is determined from the
“ideal” accuracy expected for a given ranking of

probabilities. Comparison of the accuracy curve -

with the corresponding ROC curve gives a
continuous estimate of a model’s deviation from
the ideal. Different probability distributions
may even have the same ROC curves, but their
accuracy curves will tell them apart.
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