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Generalized Predictive Control Based on the Parametrization of
Two-Degree-of-Freedom Control Systems
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Abstracts We propose a new design method for a generalized predictive control (GPC) system based on the
parametrization of two-degree-of freedom control systems. The objective is to design the GPC system which
guarantees the stability of the control system for a perturbed plant. The design procedure of our proposed
method consists of three steps. First, we design a basic controller for a nominal plant using the LQG method
and parametrize a whole control system. Next, we identify the deviation between the perturbed plant and the
nominal one using a closed-loop identification method and design a free parameter of parametrization to
stabilize the closed-loop system. Finally, we design a feedforward controller so as to incorporate GPC tech-
nique into our controller structure. A numerical example is presented to show the effectiveness of our pro-

posed method.
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1. INTRODUCTION

Recently, a great deal of attention has been paid to predictive
control as one design method of digital control system. Many pa-
pers have been reported in the field of the chemical process [1,2].
However, stability of the closed-loop system has not been guaran-
teed, since the design parameters of predictive control are not di-
rectly linked to the stability. Although recovery methods for the
closed-loop stability have been proposed for the last few years,
those methods are not feasible to guarantee the stability except for
some special cases [3].

On the other hand, a predictive control based on a class of all
stabilizing controllers, which is called Youla parametrization, has
been proposed by Naganawa et al [6]. In this method, the stability
of the closed-loop system for an actual plant (perturbed plant) can
be guaranteed, but it may have a steady-state error for the stepwise
change of setpoint. Ito et al [5] have proposed a design method of
GPC system based on the parametrization. In this method, the sta-
bility of the closed-loop system is guaranteed for a nominal plant.
However, the stability is no longer guaranteed in the case of a per-
turbed plant.

In this paper, we propose a new design method of GPC system
based on the parametrization of two-degree-of-freedom control
systems [7]. Firstly, we design a feedback controller for obtaining
the closed-loop stability. For a perturbed plant, we consider a class
of all plants stabilizable by a nominal feedback controller. The
class can be represented by interchanging the role of the controller
and the plant for Youla parametrization [8]. We identify the param-

eter, which is represented in term of a class of all plants, using a

closed-loop identification method and stabilize a clo‘sed-loop sys-
tem [4,8]. Then, we design a feedforward controller so as to
incoporate GPC method into our controller structure. We define a
feedforward controller as a time-varying FIR (finite impulse re-

sponse) filter and design it by minimizing a cost function.
2. CONVENTIONAL GPC

Consider a CARIMA (Controlled Auto-Regressive and Inte-
grated Moving-Average) model,
A@)¥(2) = B@u(2)+ (/T (2) M
Mz=1-z" )
where y(z), u(z) and {(z) are a plant output, control input and dis-
turbance process, respectively. A(z) and f!(z) are polynomials in
the unit delay operator, z—l. Consider also a Diophantine equation
1= E;(A@T @)+ Fj(2) : 1Sj<N) 3)
where Ej (z) and Fj(z) are polynomials defined by (1). From (1)
and (3), the j-step ahead output prediction J;4 j attime 7 are calcu-
lated. Conventional GPC tries to minimize the cost function with
respect to i
n=(5-r (5-r)+raTa @
where the superscript T denotes transposition of vector, 4 is
weighting factor and ¥, r and # are output prediction, reference

signal and future incremental control vector, respectively.
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3. TWO-DEGREE-OF-FREEDOM CONTROL SYSTEMS

3.1 Class of all stabilizing controllers

Consider a two-degree-of-freedom control system as shown in
Fig. 1 with a nominal plant P(2), a feedback controller C(z) and a
feedforward controller H(z). n,(2) and d(2) are numerator and
denominator coprime factor of the nominal plant P(z), respec-

tively, i. e.,

iy np(2)
©=%,@ @ dp@eRH. ®)

where RH,, denotes the class of all stable proper transfer func-
tions. This control system is internally stable if and only if H(z)
belongs to RH,, and C(z) belongs to a class of all stabilizing con-
trollers for the plant P(z).
The transfer function from r(z) to yq(z) is given by
Yo(2) = np(DH(2)r(2) ®
where yg(z) is an internal signal of the controller. On the other
hand, the transfer function from r(z) to y(z) is given by
(@) =np(H(2)r(2) (10
From (9) and (10), the tracking performance for r(z) depends on the
only feedforward controller H(z) and the feedback controller C(z)
does not play any role for the characteristics. If there are a plant
perturbation or a external disturbance, y(z) no longer equals to
v0(2) . In this case,‘ the feedback controller C(z) works to reduce
the difference e(z) between y(z) and yg(z).
Suppose a coprime factorization of the feedback controller C(z)

is given by
(0=
= e ; ne(2), dc(z?eRHm an
Then, a class of all stabilizing controllers for a nominal plant P(z) is
given by
nc(2)+dp(2)Q(2)
Co@)=————r (12)
dc(2)—np(D)Q(2)

where ((z) is a free parameter in RH,,,. Now, denote a state-space
description of the plant P(z) as
Xp+1 = Axp + Buy (13)
Yy =Cx (14)
where A, B and C are nxn, nx1 and 1xn constant matrix, re-
spectively. We assume that the pairs (A, B) and (C, A) are control-
lable and observable, respectively. Then, the coprime factors in (8)
and (11), which satisfy the Bezout identity in (15), are defined as
np(2ne(2)+dp(2)d (2) =1 (15)
np(2)=C(zd—A+BK)'B (16)
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Fig. 1 Two-degree-of-freedom control system

dp(2)=1-K(d-A+BK)'B an
n.(2)=K(d-A+FC)IF (18)
d.(2)=1+K(d-A+FO)71B (19)
where K and F are a state feedback gain matrix and a prediction

type Kalman filter gain matrix, respectively.

3.2 Class of all plants .

Now, we consider the nominal plant P(z) and the nominal con-
troller C(z) with coprime factorization given by (8) and (11) satis-
fying a Bezout identity (15). Then, a class of all plants stabilizable
by the nominal controller C(7) is characterized by an arbitrary free

parameter R(z) in RH, as follows.

Pr(2)= Np@ . N,(z), D,(z) € RH 20)
Dy(zy > P2 7P «

Np(@)=np()+d(DR(2) (21

Dp(2)=dp(2)—n(DR(z) (22)

This parametrization can be obtained by interchanging the role of
the nominal controller C(z) and the plant P(z) in familiar theory for
the class of all stabilizing controller Cp(2) in (12). Using this pa-
rametrization, we can discuss an unified approach for an additive
perturbation and a multiple perturbation. For an additive perturba-
tion P(z)+ A(z), we have the following the relation between A(z)
and R(z).

_ dp(2)A(2)dp(2)

T 1+dp (A0 (2) 23)
The closed-loop system with the plant Pg(z) and the controller

R(z)

Cp(2) can be constructed as shown in Fig. 2. This control system
is stable if and only if H(z) belongs to RH_, and Q(z) stabilizes
R(2). The transfer function from r(z) to y(z) is given by

Np(2)

1+ R(2)Q(2)

It should be noted that y(z) in (24) equals to y(z) in (10) if R(z)=0.

W)= H(2)r(z). (24)

4. PROPOSED GPC

4.1 Identification of R(z)

Let us consider a plant
Np(D) S(z)
Dp(2) Dy(2)
where the transfer function Np(2) and Dy(2) are given in (21)

Wz)= (w()+d(D)+ &(2) (25)

and (22). A structure of this plant is shown in Fig. 3. The signal
o0(z) and p(z) are given by
0(2) = 8(2)+d (2)d(2) (26)

]

Fig. 2 Control system with CQ(Z) and Pg(2)



p(2) = dp(2)y(2)— np(2)(u(z) + d(2)) @n
where 5(z) is an output of a feedforward controller H(z). If an iden-
tification signal d(z) is injected, then ¢(z) is dependent on the ex-
ternal signal and p(z) can be obtained from measurable variables,
because the p(z) is expressed by the output y(z) of the plant
Pp(z), a control input u«(z) and the identification signal d(z). The
feedback signal from p(z) to ¢(z) is canceled out in the loop; the
gain of the transfer function from p(2) to ¢(z) is equal to zero.
Therefore, this closed-loop identification problem can be restated
in term of estimating R(z) and S(z). We suppose the following
ARMAX model with the input ¢(z), the output p(z) and the noise

&)

B(2) C(2)
p(2) = R(D)o(2)+ S(2)6(2) = md(z) + mé(z) (28)
A@=1+az T+ 4Ty " (29)
B@)=bz l+--+b,z " (30)
C@)=1+52 1+ 4+, z" 31

Using a recursive least square algorithm, we can identify the pa-
rameter R(z) in open-loop manner.

The parameter Q(z) which stabilizes the closed-loop system can
be designed by a pole placement method, an optimal control

method and so on.

4.2 Design method of feedforward controller H(z)

The feedforward controller H(z) is tuned so as to minimize this

cost function

Iy == (5-r)+ 2T u (32)
Suppose the feedforward controller H(z) given by a time-varying
FIR filter

H,D) =hoy+hy 2 oot by 2~ OD (33)
where coefficient number of this FIR filter equals to a length of a
predictive interval. We obtain the output prediction j by using
Kalman filter as follows.

The output y(z) for the nominal plant P(z) is presented in (4).
The numerator coprime factor 7,(z) of the plant P(z) is a system
stabilized via a state feedback with the gain K (see (8) and (16)).
The state-space description of np (2) is given by

X41=(A-BK)xX, +Bs, 34)
y,=Cx, (35)
where x is state estimator of the Kalman filter. We can obtain the

following equations by using (34).

u+d

Fig. 3 Block diagram showing the unknown plant

¥141=Ag X+ Bs;
Xr42 = Ag e + Bsryg
: (36)
XN =Ag Xy N-1+Bsinog
Ag =A-BK G7)
Then, the output predictions $;4 j(1Sj<N) at time f are as fol-
lows.
Ye41 = Cipy1 = CAg 3, + CBs,
$142 = Ciryp = CAL %, + CAg Bs; + CBsy 4
: (38)
Seen = Clrpn = CAR &+ CAR 1Bs; +-- 4+ CBs, v
The matrix representation in (38) is given by
Jea1 CAg CB 0 St

=l ¢ %+
N N-1
cag| |cag™'s

E) L

where the sequence sp(f <k <r+ N -1) is obtained by convolving
the coefficients of FIR filter H(z) with the sequences of 1(2).

Ji+N cB St+N-1]  (39)

St ho 0 n
SteN-1] [AN-1 - hog || meN-1
1 01l Ao,
T+ N-1 | AN-1e (40)
| R
R, h,
Then, we can express (39) as
y=Ei%; + L1 Rshy 1
In a similar way, we can write u(z) as ’
u=Eyx,+ Ly Rohy (42)
where
N T
E =[-Kkag —KAK] (43)
-KB 0
L= (44)
-KAy™'B -KB

From (42) and (43), the optimal coefficients of H(z) minimizing
J, attimet is given by

By = {RXT(LITLl + Mng)Rs}‘l

x(RT LT r=RT L] By~ ART I By ). 45)

4.3 Steady-state error

In the predictive control, the object of the control design is to
track on the output y(z) to a step signal r(z). However, a steady-
state error does not become zero by using a controller H(z) which is
tuned by (45). Therefore we redesign the controller H(z) to achieve
zero steady-state error.

If a D.C. (steady-state or low frequency) gain of a transfer func-

tion from r(z) to y(z) given by (24) equals to x, we divide x into



coefficients of the controller H(z). Then D.C. gain of the transfer
function equals to 1 and steady-state error becomes zero. Note that

we loose the optimality in (32) instead of the tracking performance.
5. SIMULATION

Consider the following nominal plant P(z) and a perturbed plant
P(2)+ A(2)-
00121271 +0.0117772
1-1.8953z7! +0.90487 72

P(z)=

(38
T

P+A
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Fig. 4 Step responses
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Fig. 5 Gain characteristic of 4A(z)
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Fig. 6 Proposed method
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Fig. 7 Conventional method

0.0175z7! +0.016472

1-1.7984z 1 +0.8187272
Fig. 4 and Fig. 5 show the step responses of this plant and gain

characteristic of A(z). First, we designed an LQG controller to

P(2)+ A(2)=

minimize the following criterion function for nominal plant P(z)
represented by (13) and (14)

Ja=3(y" Quy+uTu)
where Q,, =10. Next, we defined coprime factors of (16)-(19) and
identified a parameter R(z) using the technique in subsection 4.1.
Then, we carried out the GPC, where A =0.01 in (4) and (32). Fig.
6 and Fig. 7 show the result of the simulation. In our proposed
method, the output y(z) tracks to the reference 7(z), though there is
some overshoot. However, in the conventional method, the output
¥(z) has diverged, since the stability of the closed-loop system is

not guaranteed for a perturbed plant.
6. CONCLUSION

In this paper, we proposed a new design method of the GPC
which is based on the parametrization of two-degree-of-freedom
control systems. In our proposed method, the stability of the

closed-loop system is guaranteed for a perturbed plant.
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