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Abstract This paper concerns an adaptive control scheme which is an extension of the simplified adaptive control. Originally, the SAC

approach was developed based on the command generator tracker (CGT) theory for perfect model tracking. An attractive point of the SAC

is that a control input can be synthesized without any prior knowledge about plant structure. However, a feedforward dynamic compensator

of the CGT is removed from the basic structure of the SAC. This deletion of the compensator makes perfect model tracking difficult against

even a step input. In this paper, an adaptive control system is redesigned to achieve perfect model tracking for as long as possible by

reviving the dynamic compensator of the CGT. The proposed method is applied to slewing control of a flexible space structure and

compared to the SAC responses.
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1. INTRODUCTION

In recent years. direct model reference adaptive control
(DMRAC) or simplified adaptive control (SAC) has attracted the
attention of researchers.

The SAC. developed by Sobel, Kaufman and Mabious and
extended by Bar-Kana, is a very simple adaptive control approach
[1-3]. This simplicity is quite advantageous to the SAC particularly
for large flexible space structure {LFSS) control. This is because,
unlike the conventional MRAC based on the exact model matching
(EMM) method, the controller can be designed without accurate
knowledge about plant structure.

The SAC approach is based on the command generator tracker
(CGT) theory generalized by Broussard (4], This CGT theory is a
feedforward-type perfect model tracking or EMM approach for
MIMO systems. However, for the sake of simplicity a feedforward
dynamic compensator of the CGT is removed from the basic
structure of SAC. Therefore, it becomes impossible for the SAC to
achieve EMM. This treatment of the compensator seems to be due
to the inappropriate assumption that a command signal is constant
[51. '

In this study. an adaptive control sysiem is redesigned to
recover pertect model tracking for as long as possible, by reviving
the dynamic compensator of the CGT.

As a numerical example, the proposed adaptive CGT will be
applied to slewing maneuver control of a flexible space structure.

2. CGT THEORY

We consider a controllable and observable plant represented by

X, =A x,+Bu, (la)

.\'I,sz.r,,Jeru,, (1b)
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and its reference model to be followed, represented by
X = ApXm + Bty
ym = mem + Dmum

where xeR" y, u eR", x eR™ v , u eR".
D S Tp m S

(2a)
(2b)

According to the CGT theory, when the plant’s outputs track the
reference model's outputs perfectly, the plant can be represented by
the following expressions:

xp=Apx,+Byu, (3a)
)';,=C,,x;,+Dpu;,=y,,, (3b)

* * *

Here x,,u,.y » denote the ideal state, control input and output,

respectively. In this situation, the result of the CGT shows that the

ideal trajectories x; and u;, are given by the next equations.

2p| [S11512 {xm} lQu}
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u,| {S21822[\¥4m Q" “
Qul')=v—Sl212m, ve Rn (5)

Eq. (5) is a feedforward dynamic compensator whose poles are
equal to the inverses of the plant's zeros (hereafter, we refer to the
feedforward dynamic compensator as the inverse dynamics). The
coefficient matrices in Eqs. (4) and (5) are given by Egs. (6) and

(7.
@, 92,] [A,B,]!
Q= 1% % 6)
£21 £299 ¢,D, (
|S11312 ___lQIIQIZ ISII 0 HAm Bm} N
So1592 25821 0 1 ||C,D,

In the previous work [5], the author introduced a new variable z in

order to avoid using the first derivative of u,. That is, the second

equation in Eq. (4) and Eq. (5) are rewritten as follows:
* * * *
p=Kixpm+K,u,+K,v

K;=Sy, K,=Sy K, =y,

(8a)
(8b)



ey (9a)
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3. INVERSE DYNAMICS

In Eq. (9) or Eq. (5), £241~ Lig required to be a stable matrix. By
the matrix inversion lemma, the submatrix £2y; in Eq. (6) can be
expanded as tollows:

. -1
Q,=(A,-8,D,'C,) 10
_4 -1 -1 -1 }-1 -1
=A,1+a,7 18 (D,-C,A,71B,) C A,

The determinant can be represented as

-1 -1 -1
I,+{D,-C,A, B} C,4,7B,|

|-‘211|=|Ap"1"

(1
This implies that if D,=0. then |£;,]|=0: €2;; becomes
singular.
Next. the invariant zeros of the plant are defined by the
following system equation.
~sI-A,) B,
C, D,

[t -1 (12)
=(-D"|sl-A,|D,+C,(sI-A,)"'B,|=0.

Also. the characteristic equation of .Q],l is expanded as follows:
}sl - !2;,' ! =
|sI-A,||D,+C)sl-A,)'B,||D,'|=0. (3)

These two equations imply that the eigenvalues of .Q]l' are equal

to the invariant zeros of the plant, i.e., the plant is required to be a

minimum phase system.

4. ADAPTIVE CGT DESIGN
FOR LFSS CONTROL

As described previously, the SAC neglects the third term in Eq.
(8) and the existence of Eq. (9) by restricting the command signal
to a constant signal [1-3]. However, even if the step input is
constant during the control, at the instant when the step signal is
switched from zero to one, the signal v* should give some transient
effects to the plant in order to track the reference model perfectly.
Therefore, neglect of this transient effect makes it impossible for
the SAC to achieve perfect model tracking [5].

In this section, we attempt to increase the tracking accuracy by
partially reviving the inverse dynamics.

4.1 Adaptive control system design

Let us define a control input by the following:

u,=K@r. (14a)

Here K(¢) and rare as follows:
K0y =[K,(t) K (1) K (1) K ,o(1)] (14b)
r=[ey Xy thy, U (.]T. (14c)

This differs from the case of SAC in that the fourth elements are
added in Egs. (14b-c). Here v, is generated by

{Z.( =V, Z.€ R'"c
~ -1 -1
U= gcll [P 'chl Sclzum

(15a)
(15b)

Eq. (15) is a reduced-order reverse dynamics, and €2, and S_, are

el2
determined by the following equations which are similar to Egs.

(6) and (7).

(201 242 _[A. B ]!
Qc—l-chl Q92| | C. D (16)
150115012|=['Qc11 QCIZHSCH 0 J[Am Bm an
Sco1Sco2| | $221 22| O 1 ||C,D,

where A ,B ,C ,D_are nominal values of a reduced plant of order
n < n, which consists of controlled modes only.

The adaptive gain matrix, K(¢), in Eq. (14) is adjusted by the
following adaptive algorithm.

K(t)=K,(t)+K, (1) (18a)
K, (t)=-0K,(t)+e,rTT, (18b)
K,(1)=e,r'T, (18c)

T 7T T
T,=T,=7,>0, 7,20, 620
where G is an arbitrary constant used to prevent K (#) from
diverging due to parasitic disturbances (residual modes).

Fig. 1. Block diagram of adaptive CGT.



4.2 Stability analvsis of adaptive control system

Let us define the error signals from the ideal values for the output,
the state and the input as follows:

*

e_\‘:-\'m_."pz.\’p—yl)
ES
Ex=Xp—X, (19
_ *
€=ty =ty

By these definitions, €, and €, can be described in the following

form using Egs. (1.3.8,14)

é=Ae +B,AKr+f, (202)
e,=Cpe, + D, AKr + f| (20b)
AK =K* - K{1) (20c)
fo=B,1, (20d)
fy=Df, (20¢)
fo= K (vi-v )+ Kooy (20f)

Here v, v, . corresponding to the controlled modes and the

residual modes, respectively, are the ideal outputs of the inverse

e

dynamics of a nominal plant, and K K;,r are the ideal gains
corresponding to them.
Also, (A'/,.E ¢

p+Cp.D,) in Egs. (20a,b) is a closed-loop

system obtained by applying feedback with an arbitrary constant
gain Ke* to the plant (A,),B”,CP,DP), and is described by the

following:

A=A,-BKi(1+DK.)'C,
B,=8,{1-K;(1+D,K})"'D,}
&,=(1+p,k;)'c,

B,=(1+D,K.)'D,.

(21

In order to prove the stability, let us consider the following
equation as a candidate for a Lyapunov function.

v=Lelpe + 2l (K" - K T HK" - K )] @2

where K™ is composed of the ideal gains

K =K, K, K, K| (23)
Difterentiating V with respect to time and using Egs. (18) and
(20) we obtain

1,r

2 X
—(AKr)"D,T(AKr) = 1r[e 1T reT]

- o [(K -K, () (K" - K,(r))T]
+orr[(K" =K D) K™ |- f,TAKr + f.TpPe,

v (A,7P+PA e +el (PB,-C,T)aKr

(24)

Here, it the closed-loop system (;{ EI,. E‘I,. 51,) satisfies the

P
strictly positive real (SPR) conditions, the following Kalman-
Yakubovich lemma should hold.
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A,"P+PA,=-LLT-Q
x =T

PB, -, =-LW

B,"+D,=wTw

(25)

Thus, V can be rewritten as

1

2
- trle_‘.rTTpre_\T.l— %eIQeX
—or(K™~ K /(1) T, (K" = K ()]
+orr[(K* =K, () T, ' kT
- f,"BIAKr+e,TP8,f, .

V=—L(LTe, + wakr)" (LTe, + WAKr)

(26)

From the above equation, V <0 can be guaranteed in a region
where |e |.]¢,] . 14Kr|.] AK | are large enough. Thus it is shown

that if a plant satisfies the SPR conditions with an output feedback,
the present adaptive control system is stable.

5. NUMERICAL SIMULATION

5.1 Flexible spacecraft model

As a controlled plant, a flexible spacecraft (6 modes in total)
composed of a rigid body and flexible components (assumed to
include elastic vibration modes up to the 5th mode) was
considered. In order to satisfy the aimost strict positive real
(ASPR) condition [3], a position and velocity sensor were assumed
to be collocated with an actuator at the central rigid body.

X, = % s o+ Ol

14 ~0? _2§_QZ P oTp|P (27a)
bTd 0

yp=[1a] o bTd x,+Du, (27b)

2=diag|0, 0.1794,1.854,5.970. 12.45,21.28|
b= [0.0162, - 0.0224, - 0.0035, - 0.0014, — 0.0008, - 0.0006]
£=0.005 ,a= 100.D,=0.5
5.2 Reference model
The following 2-order model was adopted:

A ) 0 0 (28a)
= X, + 173

=1 0042 —2x09 ><o.042] " lo042 "

yu=|1 100] x,, (28b)

5.3 Simulation results

A slewing maneuver of three degrees was performed. In the
simulation, all modal frequencies and damping ratios were
uniformly changed by 1/2 and 1/10 of their normal values,
respectively. The coefficient matrices adopted in the adjustment
rule were T,= T,=1 in both Figs. 3 and 4.

Figs. 3 and 4 are comparisons of the tracking property between
SAC and the present adaptive CGT. As shown in Fig. 3, it was
difficult for the SAC to follow the reference model. However, as
shown in Fig. 4, model tracking was achieved by using the signal v



Fig. 2. Rigid central body with flexible appendages.

generated by the added inverse dynamics. Also the attitude angle
of the central rigid body and the displacement at the tip of the
flexible appendages. which were the original objectives of the

control, were well damped.

6. SUMMARY

The SAC owes its simplicity to abandoning accuracy of perfect
model tracking. For better model tracking, the inverse dynamics is
necessary.

In this paper. an extended SAC was presented which can
improve tracking properties of the SAC. The proposed system is
obtained by adding the reduced-order inverse dynamics
corresponding to the invariant zeros of the plant to the SAC. The
effect of this addition was shown in the simulation for a LFSS

attitude control.,
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Fig. 3. SAC step responses.
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Fig. 4. Adaptive CGT step responses.
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