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Abstract The conventional neural network models are a parody of biological neural structures, and
have very slow learning. In order to emulate some dynamic functions, such as learning and adaption,
and to better reflect the dynamics of biological neurons, M.M. Gupta and D.H. Rao have developed a

‘dynamic neural model’ (DNU).

Proposed neural unit

model is to introduce some dynamics to the

neuron transfer function, such that the neuron activity depends. on internal states. Integrating an
dynamic elementary processor within the neuron allows the neuron to act dynamic response

Numerical
proposed DNU is so useful in practical sense.

examples are presented for a model system. Those case studies showed that the
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1. INTRODUCTION

It is currently understood that biological neuron
provides two distinct mathematical operations
distributed over the synapse and soma of neuron.
These two neuronal mathematical operations are called
synapse operations and somatic operations. From the
biological point of view, the two operations are phy-
sically seprate, however, in the modeling of biological
neuron, these operations have been combined, for
example thresholding in the soma is transferred to the
synaptic operation. At the macroscopic level, the
dendrites of each neuron receive pluses at synapses
and convert them to continuously variable dendritic
curtent. For each neuron there is time varying
nonlinear relationship between the pulse rate at the
synapse and the amplitude of the dendritic current[1].
M.M.Gupta and D.H.Rao have proposed a different
architecture to model the biological neuron named the
‘dynamic neural model’[2]. In this paper, we propose
new DNU structure by considering the idea that
neuron activity depends on internal neuron states.

2. DYNAMICS OF AN ISOLTED DNU

The dynamic neural unit(DNU) proposed in
M.M.Gupta and D.H.Rao[2], is a good dynamic neural
model. The DNU comprises of memory elements, and
feedforward and feedback synaptic weights. The
output of this dynamic structure is to a time varyving
nonlinear activation function. Thus, the DNU performs
two distinst operations. one for synaptic operation
and the other for somatic operation. The first
operation corresponds to the adaption of feedforward
and feedback synaptic weights, while the second
corresponds to the adaption of slope of the nonlinear
activation function. The DNU consists of a linear

structure having synaptic weights ay and bp
representing a second order structure followed by a
nonlinear activation function as shown in Fig. 1.
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Fig. 1 Basic structure of DNU, which

synaptic and somatic components

consists of

3. PROPOSED DYNAMIC NEURAL UNIT
MODEL

The dynamic structure of proposed DNU, as shown
in Fig. 2, consists of synaptic component, dynamic
elementary processor(DEP) and somatic component. A
new structure of DNU accounts for synaptic
adaption(w,wo, *w;), dynamic elementary adaption
(ay,a12,a21,a22,b1,bo,ci,c2)  and  somatic  adaption{gs, 8 ).
The DEP has a second order structure which can be
described by the following state space representations.
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where I(k)€R" is the neural input vector, x(k) is the
input of DEP,vi(k)ER! is the output of DEP, k is the
dicrete time index, and wi is the weight of the neuron

input. Using the linear time shifting operator
q ' [sk))=s(k-1) the neuron transfer function is
described by

(=) () = 232207 (g
A 0 B T 400 pa ]

where 2z, z1, Z2 ,p1, pz are adaptable feedback and
feedforward weights respectively.
The nonlinear mapping operation on vi(k) vields a
neural output u(k) given by

w(k) =T gw k), 0] (5)
where ¥[-] is a nonlinear activation function of
neuron with a threshold &. In order to extend the
mathematical operations on both the positive and
negative neural outputs, and expand the neural activity
for both the excitatorv and inhibitory inputs, we can
choose activation function to be a sigmoidal function
defined as

¥{v(k)] =tanh [ gw,] =tanh [¢]
where v=g.vi, and gs

(6)

is the somatic gain which
controls the slope of the activation function.
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Fig. 2 Proposed Dynamic Neuron Model
consists of synaptic, somatic components
and elementary processor in state space
represented with P inputs and 1 output

which is

31 Adaptive Algorithm fr Optimal Parameters

The Objective of the algorithm is to adjust the
network parameters based on a given set of
input-output pairs and to determine the optimal
parameter set which minimizes the cost function J.

J= % EL (B —u(B)] (7

where N is the training set size. The define error,
e(k) is the difference between the desired response
ua(k) and the actual neuron response u(k). Applying a

gradient method, the optimal parameters are
approximated by steepest descent rule:
¢ new= Y oat 7" E[e(le)—m’fw/e } (8)

where ¢ is the parameter and 7 is the learning rate.
It is obvious that
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Therefore, the activity function is to be differentiable.
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Using the time shifting operator, five cases can be
distinguished:
Case 1) ¢ is a DEP coefficient of the numerator P(q)

d[v(R] _ __q

T' ¢z, [Sw(k)] - P(q) [x(B)] (10)
Case 2) ¢ is a DEP coefficient of the denominator
Z(q)

SLedB] | s, =L (o(B ] (D)

¢ Pq)

Case 3) ¢ is a neuron input weight
dlv x(k) ]

- _
) | g, = [Su(B] = (a) (I{R]1 12)
Case 4) ¢ is a neuron threshold
3 [ 2(k) _ ¥
30 | oy = 30 (13)
Case 5) ¢ is a slope of the activation function
SLdBly |~ e (14)

S¢(k) and Sy(w) denote the parameter states. To
determine the change of the neuron activity depending
on a parameter, the gradient has to be filtered by the
denominator of the used dynamics[3]. This has a
further benefit in that the adaptation procedure is
stabilized since the calculated parameter at time
instant [k] takes account of the past change at [k~1]
and [k-21.

3.2 Dynamic Multi Layer Perceptron

Now, to make use of the connective power of
ANN, the DEP neurons can be distributed to build a
dynamical muti laver perception(DMLP). Figure 3.
represents such a three laver DMLP with 2 inputs
and one output. It is important that the proposed
DMLP does not require the past values of the process
measurement. Instead, it processes the system
measurements at current instant [k]. This reduces the
dimension of the network input space.
Equation(15),(16) and (17) described the inference in
such a network beginning by the input layer <K>
through the hidden layer <M> to the output layer

<L> respectively[3].

x(k) ¥ =W* (k)
vi(k) ¥ =diag[ I' (k)*> Z <]
ul) ¥ =¥ (gvi(k)™*, 8)

(15)

X(k)<L> =W<L>u(k)<k>
(k)Y =diagl I ®)” Z <)
uR) = (g™, 6)

(16)

x(K) M =WMuk)™
vik) ™ =diag[ I" (k)™ Z ™}
u ™M=y (g (0™, 0)

amn

7> {s the state vector of the laver, WY s

the weight matrix of laver <J> conisting of the
weight vectors w for each neuron, I” is the data
matrix consisting of the signal vectors 7 for each
neuron in layer <J>, and Z<Y is the parameter
matrix consisting of the parameter vector & for each
neuron in layver <J>

<
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Fig. 4 Three layer DMLP with 6 DEP and with the
adaption scheme of cofficient a; in the second
DEP within the layer <k>

4. STABILITY ANALYSIS OF NEURAL
MODEL

In order to stabilize the proposed dynamic neural
model, it is necessary to derive the stability condition
for parameters of DEP and to determine the range for
slope of activation function. Equation (1) and (2) may
be written in the compact form as

Sk+1:ASk+ka (18)

V= cSp+dx, (19)
where xx and v are the scalar input and ouyput of
DEP, and sk is the second order state vector; matrices
Abc, and d are 2X2, 2X1, 1x2, and 1X1 real
constant matrices, respectively. Given (18) and (19),
we obtain the necessary. and sufficient condition that
the state coefficient matrix A converges in the steady
state as follows:

A TA)Y <1 ,i=1,2 (20)
where A; [ A] is the i th eigenvalue of the matrix.
If and only if the above equation holds, all the poles

of a transfer function of DEP lie inside the open unit
circle of the z plane. hence the roots of Z{(q) are

identical to the eigenvalues of A.

Applving the Lyapunov theorem, parameters of DEP
[Abcd] are stable, and wupdate optimally. All

eigenvalue of A have magnitudes less than 1 if and

only if for any given positive definite hermitian
matrix & with the property  { A, @) observable.
The matrix equation

P—ATPA=Q (21)
has unique hermitan solution P and P is posive

definite. Proposed DNU consist of DEP which have
minimum  sensitivity  structure{4]. The minimum
sensitivity structures can be composed by selecting a
output feedback matrix A as follow.
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A=[ rcosf  vsind ] 22)
—vsin@ vcosf

From (22), a1 is equal to axz, a2 is equal to -asz;, and
A[A]l is ay *ja;z. To derive stability condition of
DEP, Q=1 Solving (21), unknoun

element of matrix P yields a simultaneous linear
equation given by (23). From (23), if absolute value
of r has :
-_1 1710

1—%[ 0 1]
less than 1, then P is positive definite. Therefore
optimal parameters of DEP are stabilized during
learning and adaption under condition | 7| <l. As to

the stability of the gradient computation, we note that
the original feedback matrix is scaled by a constant

we suppose

(23)

'[vl. So as long as!| @'[v]l <1 the stability

condition will remain intact. For the nonlinear
&V &V

activation function, % v)=ﬁ, this condtion

can be met by requiring gs to less than or equal to 1.

5. SIMULATION RESULT AND REVIEW

In the case studies, we show the proposed DNU is
so useful in practical sense. First, we demonstrate the
functional approximation capability of the proposed
DNU. Different arbitrary nonlinear functions were
used to evaluate the function approximation capability
of the DNU. Some of the functions and their
approximations are shown in Fig. 5. To compare
convention DNU, approximation result was presented
in Fig. 4. and it was observed that proposed DNU
could approximate more accurately. This approxima-
tion feature of proposed DNU is exploited to
systhesize a controller for nonlinear dynamic systems
as discussed in the following problem. Second, the
problem to be addressed in the control paradigm
consists of finding a control signal u(k) that will
force the system output y(k) to track asymptotically
the desired output yq(k); that is lim [ va(k)-v(k) ] =0
as k—oo. In this example, a nonlinear dvnamic
system of the form

k)= élaiy(k—Z) + ’éo Biu(k=j) +

0.05 - fFl k=10, 2u(b— 1
(24)
where f[-] is arbitrary nonlinear function, was

cascade with the dynamic neural model. The objective
of this to demonstrate the adaptive tracking capability
of the dynamic neural model based controller under
the following situations: (i) time varying nonlinear
functions, (ii) varying pattern of input signals, and
(iii) perturbations in the plant parameters and changes
in configuration of the plant dynamics. The nonlinear
function used in this example was[5]:

fl- ] =g D B+ A e~2) ’)+\/ w(B) T4 wWh—1) 2+ u(k—2) 2
L0<k <300
71 -] = 05=0.5cos @a(y(k=1)"+w(k=2))] +e ¥

4+2u(k—1)"+2(k—2)*
,300<k <1000
System input was changed as follows:



I(t)=sin(2 7 k/200) , 0<k =400
I(t)=0.6 ,400<k <500
I(t)=0.2 D00<k =600
[)=-0.2 ,600<k <700
)=-0.6 ,700<k =800
I(t)=0.6sin(2 7 k/200)  ,800<k <1000

The plant parameters were:

Bs=[121008] anp=1[130907] ,0<k<400
Bu=[121014] an=[130907] ,400<k<850
Be=[121000] ean=[0100900] 850<k=<1000

As may be observed from the above details, the
nonlinear plant undergoes both input signal variations
and parameter perturbations during the time interval
400<k<800. Futher, the plant structure was changed at
k=850 from a second order to a first order system. The
simulation results obtained for this example are shown
in Fig. 4-Fig. 11. The results shown in Fig. 10 and
Fig. 11 illustrate that proposed parallel connection DNU
is less sensitive to variations in the plant parameters
than convention parallel DNU. This example
demonstrates the robustness of the proposed neural
model for variations in nonlinearity characteristics, input
signal, and for changes in the dynamic characteristics
of the plant.

6. CONCLUSION

A new steucture of dvnamic neural model has been
proposed for control applications. The architectural
and algorithm to update the adjustable parameters of
DEP, which serve as the dynamic element in the
proposed neural model, have been described. The
conclusion obtained on studies summarized as follows:

1. The proposed DNU could be used to adaptively
track nonlinear function.

2. This functional approximation
nerural modelis emploved
nonlinear systems.

3. The select of the optimal laver and the connect-
ion(parallel and cascade) of DNU will be study
in future.

capability of the
to control unknown
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. 4 Simulation results for nonlinear control
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