'95 KACC (1995. 10. 23 ~ 25)

A Solution of Inverse Kinematics for Manipulator
by Self Organizing Neural Networks

% Fumiaki TAKEMORI', Yasuhisa TATSUCHI?,
Yoshifumi OKUYAMAT and Ahmet KANBOLAT'

t Faculty of Engineering, Tottori University
4-101, Koyama-cho Minami, Tottori 680, Japan
' Daiichi Kogyo Co.,Ltd., 3-6-4, Nishitenman, Kita~-ku, Osaka 530, Japan

Abstract:

This paper describes trajectory generation of a robot arm by self-organizing

neural networks. These neural networks are based on competitive learning without a teacher
and this algorithm which is suitable for problems in which solutions as teaching signal can-
not be defined — e.g. inverse dynamics analysis — is adopted to the trajectory generation
problem of a robot arm. Utility of unsupervised learning algorithm is confirmed by applying
the approximated solution of each joint calculated through learning to an actual robot arm
in giving the experiment of tracking for reference trajectory.

Keywords : Self-organizing neural networks, Inverse kinematics, PTP trajectory

1 Introduction

It is convenient to use the well-known inverse
kinematics analysis to give the trajectory generation
of the manipulator. In this method, each joint angle is
calculated geometrically by givining only position and
its direction of the top of the arm. However, a solution
of inverse dynamics problem is intuitive as geometric
solution, so inverse dynamics analysis does not have a
specific solution. In addition, it has several points that
inverse dynamics problem for all mechanisms cannot
be solved necessarily, as an example a solution that is
impossible to realize mechanically has been calculated.

In this paper, we pay attention to self-organizing
neural networks based on competitive learning without
a teacher and adapt this algorithm to the trajectory
generation problem of a manipulator. It is expected
that this method can avoid an ocasionally unrealizable
solution of inverse dynamic analysis and this learning
method also reduces a large number of calculations pe-
culiar to unsupervised learning. We propose an algo-
rithm deriving a solution of inverse dynamics problem
for the manipulator trajectory generation. Finally, an
utility of unsupervised learning algorithm is confirmed
by applying the approximated solution of each joint
calculated through learning to actual manipulator in
giving the experiment of tracking for the reference tra-
jectory.

65

2 Self-Organizing Neural Net-
works

A typical one of the unsupervised learning is Kohonenn
self-organizing feature maps.*~51 The neuron model
proposed by Kohonenn is shown in Fig.1 and its be-
havior is described by the following equations.

= 1
I = XiWis, O = ——— 1
; J J 1—}—6_[‘ ()
X; :input
W,; : synaptic weight
O; : output
X1

&
X2 % O

n

IFig.1 Neuron model

In this model, unlike usual neural network models, the
learning is defined as follows so that a neuron itself
selectively behaves as a kind of signal.

dW;

dt”' =a0:X; + BO)W,;, a >0 (2)

First term on right-hand side of (2) follows the Hebb's
law, while second term exhibits nonlinear damping ef-
fect for the output activity O; and it is possible to
stabilize O; so as to converge to a certain range by set-
ting the constant term in Taylor expansion of function
B(0;) to be 0. Thus, to give the second term can make
a monotonous change of synaptic weight in equation
with first term only changing.

Fig.2 shows a nervous circuit of basic competitive
system model.[?] This nervous circuit is composed of
n-excitatory synapse E; and one inhibitory synapse [.
The excitatory synapse and the inhibitory synapse re-
cieve exogenous inputs X; and X, respectively. Xj is
ordinarily 0. The main difference between this network
and the other is the synaptic connection between input
signal and feedback signal of the output.

In this paper, we add the following three conditions
to make competitive learning easy.?!

(1) When all input signal X; is lower than a constant
value Xpin, no neurons get stimulated.

(2) When input signal is higher than X, in spite of
their number, just one only neuron gets stimulated.
(3) If once a neuron gets stimulated, it keeps this situ-
ation not so far as the system is resetted.

2.1 Learning Algorithm

The learning process mentioned above can be given in
the following calculation steps.

STEP1 : Give the normalized input pattern to X;.

STEP2 : We set randomly the initial value of weight
W, from input synapse X; to neuron j.

STEP3 : By the distance between input pattern X;
and vector of synaptic weight W,;, find neuron j
located at the center of bubble so that D; becomes

minimum.
D; =Y (X: - Wy)? ®3)
i=1 w1
X, E o,
“w2
wi
X — E, +~O;
W2
W
X — E., 0.
Wz
Xo

Fig.2 Competitive-system model

66

STEP4 : Collectively adjust neurons neighbouring
the neuron j selected in STEP3 by

Wit +1) Wi(t) + a(t)(Xi(t) —
i € N;@).

Wi;(1),(4)
(5)

Both a(t) and N,(t) are experimentally given to decay
in time, (t) takes the value of 0~1 and N;(?) is a class
of distance functions, which considers that the region
of neurons located on a two-dimensional plane becomes
narrow with passing of time.

3 Application to Robot Arms

Robot arms used in the experiment are RRRR-
structures of which waist, shoulder, elbow, and wrist
joint have rotative joints as respectively shown in Fig.3.
The top of the wrist joint has hold-type " end-effector”.
DC motor as actuator is installed in each joint and PD
compensator is used to control it.

In this paper, trajectory generation of each joint is
given by a neural network so that the end-effector can
draw linear trajectory referred to as "PTP trajectory”.
In PTP trajectory, it is assumed that the end-effector
moves in a linear motion with constant velocity and if
once position and direction of the end-effector at start
point and at final point are given, it is easy to compute
principal axis vector direction (this means 6,460,463 in
Fig.3) at an arbitrary point on linear trajectory. Thus,
as shown in Fig.6, giving the state of end-effector as
input signal to the neural network model, each joint
angle is computed by competitive learning,

3.1 Simulation and Experiment

In order to normalize input signals applied to neural
network, Coordinates of actual robot arms are normal-
ized as follows

Lo =0.35, L, =0.21, Lz = 0.16, L3 = 0.25,
Z

Fig.3 Configration of arm

while the normalized output is modified to angle value
by

Now, we try to make a plan of PTP trajectory as
follows;
start point: Ps(z, 2)=(0.0, 1.0)
final point: P¢(z,2)=(0.485, 0.321)
final principal axis vector: ¢y=135|deg]

For simply, here, it is assumed that trajectory genera-
tion is carried out on a two-dimensional plane i.e., g
does not rotate. Number of neuron is 10x10 and input
signals multiplied by joint number (x3) are prepared.
Trajectory computing algorithm is as follows.

Hidden layer

Output layer
PTP
cordinates

b

—

e _10X10

Fig.4 Competitive learning

STEP1 : Give reference coordinates P*(zy;, z5;) as in-
put pattern X7, i.e.
a._ |Zpi
x| 2] "

PTP coordinates
wrist-joint coordinates

0:

1:

STEP2 : Assume that synaptic weight W is the co-
ordinates of the top of the robot arm, i.e.

)
h)

and give random value of 6, as input synapse.

[l
8

(8)

W e

1=0

STEPS3 : From Eq.(6), find the neuron j so that the
square of distance between reference point and the
top of the robot arm, i.e.
)

" a a
J 28 "
i=1 p

Zig

(9)

becomes minimum.!”}

67

STEP4 : For a = 0; adjust 63;(t) by the following
equation in order to conform principal axis vector
¢(t) to true one ¢;(t).

03:(t 4+ 1) = 03:(2) + a(t)(¢:(t) — ¢(t)) (10)

a(t) and N, (t) then take the values shown in Table
1.

For a = 1; Complete computation.

STEPS5 : Repeat STEP1 ~ 4 for a=0 and 1.

Table 1
Learning iteration N;(t) oft)
0~ 1.0 x 10? 20 035
1.0 x102 ~5.0x 10> 16 0.25
50 x10° ~1.0x10* 11 0.20
1.0 x10° ~ 2.0 x 103 7 0.15
2.0 x10® ~ 5.0 x 10° 3 0.1
5.0 x10® ~ 1.0 x 10* 0 0.1
1.0 x10* ~ 0 0.05

3.2 Learning Results

Fig.6 shows the learning process of PTP trajectory
generation using a workstation. Each trajectory data
applied to actual robot arms must be rearranged
monotonously because in simulation they are outputted
randomly. These curves are shown as circle-points in
Fig.6.

In the experiment of tracking for reference trajec-
tory, we construct PD control system, and if we apply
circle-points curves as reference trajectories to robot
arm, then, as a result, solid curves in Fig.7 can be ob-
tained.

Output data learned by unsuitable parameters shows
that there are obviously dense parts and sparse parts in
the drawn trajectory as shown in Fig.6, which leads to
rapid changes in the angle data and causes the blur-
ring of robot arm in actual experiment and interferes
with ideal trajectory formation. This results from that
output data tends to deflect to first output position
when neuron value increases from one direction only.
But making some increase directions of neuron uniform
is able to avoid this tendency. Thus, to tune param-
eters suitably is important, however, it is not easy to
find its regularity. Therefore, in tuning the parameters,
we must still depend on trial-and-error.

4 Conclusion

In this paper, it was confirmed that PTP trajectory of
robot arm could be computed by neural networks using
self-organizing feature maps. This method can avoid

an occasional unrealizable solution of inverse dynamics

analysis. In this learning method, however, although it
is possible to reduce the number of calculations peculiar
to "supervised learning”, there are some ”unsupervised
learning” points for which parameter values making the
synaptic weight decay have to be selected by trial-and-

€rror.
0 103
1
10 10*
2 (0.0)
10 10°
Fig.5 Learning process
150 T T T T T T T
100
— 50}
4
s
@
2
<
0
-501
. . ; ; ; .
0 2 5 3 7 8 9

Time [s)

Fig.6 Calculated trajectories

68

References

(1

2]

3]

[4]

[5]

(6]

[7)

1

1

Angle (deg]

Y .Tatsuchi : A Study on Trajectory Generation of
Vertical Multi-Joint Type Robot Arms by Neural
Network (In Japanese), Thesis for M.Sc. Engineer-
ing Division, Tottori University (1994)

K.Nakano : An Introduetion to Neurocomputing
(In Japanese), Corona Publishing Co. (1991)
R.P.Lippman : An Introduction to Computing
with Neural Nets, IEEE ASSP Magazine, pp.4/22
(April, 1987)
S.Murai et. al : Self-Organizing Learning of Neu-
ral Networks by Using a Temporal Correlation (In
Japanese), The 38th SCI, pp.129/130 (1994)
Y.Anzai : Recognition And Learning (In
Japanese), Iwanami Publishing Co. (1991)
J.J.Craig : Robotics, pp.93/95,209, Kyohritsu
Publishing Co.(1991)
S.0da et. al : Path Planning of the Manipulator
Using Hopfield Network, (In Japanese), The 38th
SCI, pp.401/402 (1994)

sob SN NN W RS U SR S

BN
oof et TTT 0 T
sof o : e -

5
Time [s]

Fig.7 Experimental result

