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Abstracts

A newly developed discrete-time control design method for impact machines is proposed. It is composed of

identification and control using neural networks, where the optimal controller with saturation and no use of velocity meas-
urements is obtained. By computer simulation, the proposed method is demonstrated to be effective: as the training pro-
gresses, the cost function becomes smaller; the proposed control is superior to PID control tuned with Ziegler-Nichols (Z-N)
parameters; robust performance with respect to uncertainty, disturbances and working time is so good.

Keywords Impact Working, Vibration, Neural Network, Digital Control, Nonlinear Control

1. INTRODUCTION

The working and assembling by vibration have been widely
employed so far in many working strokes. In such working there
is impact working. Impact machines have been applied to proc-
esses such as forming, punching and hammering. A harmonic
driving force had been adopted as an exciting force of impact
machines a few years before. Because of friction and deformation
caused by collision, the motion of an impactor after an impulse is
disturbed and becomes unstable. Therefore, the impact working
cannot be stably continued by a predefined driving force like the
harmonic one. Recently, the authors have studied impact ma-
chines”™. K. Koizumi et al. ™ ? suggested energy and power
minimization methods, respectively. M. Sasaki et al.” presented
optimal PID control with saturation using genetic algorithms,
where a special controller is needed for vibration control. The
working with impulses has nonlinear behavior because of colli-
sion phenomena, which bears the constraints of state variables,
and has input constraints, even if the mathematical model is
linear.

Neural networks have been paid much attention to as one of
the most powerful nonlinear optimization methods, and em-
ployed much in the field of control engineering, so far. However,
neural networks have not been adopted at all in working by
impact.

In this paper, a newly developed digital control design
method for impact machines is proposed. It is composed of iden-
tification and control using neural networks. The optimal control-
ler with constraints and no use of velocity measurements is
designed using an inverse dynamics of the plant and error back-
propagation with a varying leamning rate and momentum. Taking
the repetition of the motion of a small impact machine into con-
sideration, the control of the motion is investigated only for one
working period, aiming at the high-speed, high-accuracy and
stability of the small impact machine. The control objective for
one working period is that at the specified start time of working,
the desired impulse position and velocity of an impactor are
satisfied.

2. PROBLEM STATEMENT

Consider the control problem of the impact machine given by
Fig. 1. The equation of motion is governed by
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Fig. 1. Model of the impact machine.

where m denotes the mass of the impactor, ¢ denotes a viscous
damping coefficient by atmospheric air, k¥ denotes the spring
constant, u(¢) which is the control input represents the driving
force, and y(f) which is the plant output represents the dis-
placement of the impactor. The control design is done only for
one working period. Successive working is performed by the
recursion of the control, taking the coefficient of rebound into
consideration after impulses. The control objective for one work-
ing period is that at the specified start time of working which
means the start time of an impulse, the specified impulse posi-
tion and velocity of the impactor are attained. The objective is
essential to high-speed and high-accurate working, and becomes
an almost perfect tracking problem in finite time. Especially, it is
very important to satisfy the desired velocity for good working. In
this paper, it is expected that the stability after an impulse until
the coming impulse is attained by the following power of the
neural controller. Therefore, a special controller for vibration
control after an impulse is not used. On this point, it differs from
the PID control®. For one working period, the reference model
based on the contro] objective needs to be designed as
Yu () = Gp(s)r(t) @

where s=d/dt, y,(r) denotes the reference output whichisa
teacher signal, G,,(s) denotes the transfer function, and ~(t)

denotes the reference input.

3. DESIGN METHOD

A newly developed discrete-time control design method for
impact machines using hierarchy neural networks with super-
vised learning is proposed which is composed of identification
and control.



3.1 Identification

To obtain good control design, the plant has to be identified
quite well. The model to be identified is represented by the pulse
transfer function model of Eq. (1)
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where k represents the number of discrete time, and g~

represents a unit delay operator. The cost function J to be
minimized needs to be designed for a measure of identification
(see the following simulation in detail). Identification is done
using a linear neural network with two layers, where the weights
are all updated sequentially, the activation functions of the units
concerning u(k -1) and wu(k -2) are both f(x)=x/10, and
the others are all f(x)=x.

3.2 Control

The working by impulses has nonlinear behavior due to
collision phenomena and input constraints, even if the equation
of motion is linear. This working problem is solved using nonlin-
ear neural network control. From the control objective, the pres-
ent and future information of impactor’s position and velocity is
considered to be important. Taking this and a backward differ-
ence into account, the control is derived from an inverse dynam-
ics of state-space representation of the plant (1). Thus, only for
one working period, the prototype of the proposed control with
physical constraints is designed as follows:

wk) =kyy (k+ 1)+ kyy (k) + kyy(k) + kb y(k -1) “4)
with
)u(k)| <u" 5)

where u' means the maximum admissible value of the input. It
is noted that no velocity measurements of the impactor are used.
To satisfy the tight requirement of the control objective, the
control parameters have to be optimized using a cost function.
This is performed using a nonlinear neural network with three
layers, varying learning rate and momentum factor(see Fig. 2).
The activation functions of the input and hidden units are all
S (x)=x, while that of an output unit is the logistic sigmoid
function.

f(x)

2u .
= ——————U
1 +exp(-x)

By the weight w{!) and Eq. (6), the sigmoid function with a
temperature is obtained. In most cases, the temperature is chosen
previously. In this paper, it is introduced how to estimate the
temperature by a weight between a hidden and an output layers
(see Fig. 2). The cost function J needs to be designed for
control (see the following simulation in detail). Using error
backpropagation, all the weights are batch updated as follows.

WP [N +1]= wP[N]+ Aw{D [N]+8w(P [N]
wiP [N +1]= w{P[N]+ Aw(P [N]+ 8w [N]

(6)

aJ[N]

AwPIN] = e V]S O]
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awP[N]
wi[N] -a[N]{w,(P[N] ~wi[N - 1]}

, AW [N]=~¢[N]

(%)

! [N]-o.[N]{wl('l‘)[N]-w]('l‘)[N -1]} ')

where Aw(") denotes a change to the weight, dw{" represents
momentum, £ 1s called a leamning rate, o is called a momentum

factor, and N represents a training epoch.
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Fig. 2. Neural network for control.

4. SIMULATION

In this section, to make sure that the proposed method is -
effective, the computer simulation study was implemented. The
parameters of the small impact machine were m=387.16g,
¢=7.759 X102 Ns/m, and k = 1.828 N/mm.

4.1 Identification

The inputs for identification and test were chosen as rectan-
gular waves with amplitudes 1 and 2 , and periods 20ms and
10ms, respectively. The plant of Eq. (1) was calculated by the

4th-order Runge-Kutta method with the step-size 2 x 10~ ms.
The sampling period for identification was chosen as T =02 ms.
The time interval to be identified was one period of the input.
The cost function was given by

J -%{y(k)—oz}z @®)

where o? is an output of the second layer in neural network for
identification. All the initial values of weights were set to zeros.
The learning rate was ¢[N]=001. The momentum factor was

set to a[ N] =0.95. The maximum number of epochs to train was

2.6 X 10% Figure 3 shows the test result of the model. From this,
it is obvious that the model is in good agreement with the plant.
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Fig. 3. Test result of the model.
4.2 Control

In this simulation, one working period was 30.2ms and the
control objective was as follows: the start time of the period was
t = 0 ms; the start time of an impulse was ¢ = 30 ms; the impulse
position was y(30) = —=0.05 mm; the velocity of the impactor was

v(30) = —-0.05m/s, where v(t) = y(¢) . The limitation of input

was setas #" =1. For simplicity, it was assumed that the final
time of working was 30.2ms, which means that impact (ie.,
working) time is 0.2ms, and that the coefficient of rebound was
0.6 for successive working. Taking these into consideration, the



reference model for one working period was designed as follows:

001
W’l(’) (0st=15)
001
YM(I)'<GW?‘2(I) (15<ts30) 9
- 005 (30 <t =302)

where y,,(0) =v,,(0) =0, »(f) = 1546 N, and r, () = ~1085N.
The cost function for control design was as follows.

110, = y? (k) -yk =1 y(k) - p(k = DY
I35 oo =g

2 T T

(10)
where time means discrete-time. All the initial values of weights
were generated by uniform random numbers with [-0.5,0.5]. The
maximum number of epochs to train was 3 X 10°. Especially in
the following results, taking practical applications into considera-
tion, the plant was computed using the 4th-order Runge-Kutta
method with the step-size 2 X 10™“ms. The absolute values
(percentage) of the relative errors of the working start time and
velocity of the impactor at the target, y = -0.05mm are denoted

by " and v*, respectively.

1) Working for one period: The three cases were considered
(see Fig. 4): a) the learning rate is invariant and the moment
factor is zero (e[N] =03, a[N]=0), b) the leaming rate and
the momentum factor are both invariant (e[N]=03, ao[N]=
0.6 ), ¢) the proposed method, i.e., both the learning rate and the
momentum factor are both variant (¢[N] (a[N]) =03 (06) for

0N <3x10%, 1(02) for 3x10° <N <8x10*,and 2 (0.7)

for 8x10* = N =3x10° ). From these, it is clear that the pro-
posed method is best. The results by the proposed method are
shown in Fig. 5, which shows the evolution of dynamic behavior
and contro] parameters concerning epochs, and each gain and the
relative errors

k) =-2847, k, =2194, k3 =3590, k4 = -2939

w) = _5612; 1" <0.06%, v' <11% an
were obtained in a final epoch, respectively. The results are
acceptable.

2) Successive working: Simulation for successive working,
which means the repetition of one working period, was imple-
mented. For comparison, the simulation result by PID control
tuned with Z-N parameters® is shown in Fig. 6, where there are a
lot of irregular impulses, so control performance is very bad. The
result of the proposed method is shown in Fig. 7. From this, it is
obvious that the proposed method yields a high-accurate and

stable control result, where the t* and v* both lay within the
range of 1.1 percent in each working period. From these resuits,
it is clear that the proposed control is extremely superior to the
PID control tuned with Z-N parameters. Especially, it is remark-
able that the proposed method has no particular vibration control
to remove undesirable vibration after impact, while the PID
control method® using genetic algorithms needs special vibration
control.

3) Robustness: Robustness with respect to uncertainty, distur-
bances and working time using the result of the proposed method
was considered. The simulation results are shown in Fig. 8:
+20% and +50% changes of parameters m and k , respectively,
a periodic disturbance with a period: d(f)=1 for 0<t=<15 and

0 for 15<t <302 working time with 0.1ms and 0.4ms. The
cases of working time, 0.1ms and 0.4ms were both similar to that

of working time, 0.2ms, respectively. From these, it is obvious
that robust performance is so good.
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Fig. 5. Simulation results for one working period.
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Fig. 7 Successive working of the proposed control.
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Fig. 8. Successive working: robustness of the proposed control.

5. CONCLUSIONS

A newly developed discrete-time control design method for
impact machines has been proposed. The optimal control prob-
lem with constraints of both the input and state variables has
been successfully solved using an inverse dynamics of the plant
and neural networks with varying learning rate and momentum
factor. The main characteristics are as follows:

1) The proposed method is composed of identification and
control using neural networks; the temperature of the sigmoid is
estimated, the optimal nonlinear controller with constraints and
no use of velocity measurements is obtained,

2) The high-speed and high-accurate control is realized; no
particular vibration control after impact is needed;

3) By computer simulation, it has been demonstrated that the
proposed method is effective: the plant is identified very well; the
more the training advances, the smaller the cost function be-
comes; the proposed control method is superior to the PID control
method tuned with Z-N parameters; good successive working is
obtained by repeating the proposed control; the proposed method
is robust with respect to uncertainty, disturbances and working
time.
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