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Terminal Sliding Mode Control of Robot Manipulators for PTP Task
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Abstract In this paper, a variable structure control scheme with a terminal sliding mode is proposed
for robot manipulators. The proposed control scheme guarantees that the output tracking error converges
to zero in finite time, and the overall system shows robust property against parametric uncertainties and

external disturbances all the time.
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1. INTRODUCTION

Recently, Variable Structure Control (VSC) has re-
ceived increasing interest [1)-[3]. In the field of the VSS
application, the robot manipulators have been stud-
ied a lot for a long time [4]-[6]. However, since these
VSS controllers have been designed with simple linear
sliding surfaces, the system has a reaching phase prob-
lem. In addition, in order to get a fast transient re-
sponse and fast output error convergence, the poles of
the sliding mode dynamics have to be located far from
the origin on the open left half s-plane, and thus it in-
creases control gains. Furthermore, in some cases, it is
preferable that the relaxation time can be adjustable
[7)-[8).

To overcome these shortcomings, some terminal slid-
ing mode controllers have been proposed based on the
Zak’s study [9]-[10]. However, the controllers produce
unbounded control signals around z = 0 axis and they
have to be able to evaluate a nonlinear function z7;
moreover, a nonlinear function z7 has to satisfy the
additional conditions which were not noted on their
works {11].

Thus, in this paper, a variable structure control
scheme with the terminal sliding mode is proposed for
robot manipulators using new nonlinear sliding sur-
faces. The proposed controller guarantees that the out-
put tracking error converges to zero in finite time; be-
sides, it assures the occurrence of the sliding mode all
the time. Therefore, the overall system always shows
robust property against parametric uncertainties and
external disturbances, that is, the tracking error curve
can be predetermined on the entire time interval re-
gardless of the existence of the modeling uncertainties
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and disturbances.

2. ROBOT DYNAMICS

The dynamic equation of an n degree-of-freedom
robot manipulator can be derived using the Lagrangian
formulation as ;

M(9)§+Cl(g,9)¢+Gl(g) = u+d, (1)

where M (g) is an n X n inertia matrix, C(g, g) is an
n X n matrix corresponding to Coriolis and centrifugal
factors, G(g) is an n X 1 vector of gravitational torques,
d is an n x 1 bounded disturbance vector, gisann x 1
vector of joint angular positions, and u is an nx 1 input
torque vector.

Let us define each matrices as

M = M +AM,
c = C'+Ac,
G = G +AG,
where “°” denotes the mean value and “A” denotes the

estimation error. Assume that the AM;;, AC;;, and
AG; are bounded by M, C?, and G™, respectively

3y 0 iy
as
,AMJ'I < M']nv
'ACiJ‘I < C:?:
lAG| <GP,

where “m” denotes the maximal absolute estimation
error of each element, and 7, 7 = 1,2,---,n. At the
same time, we assume that [d;| < d, where ¢ =
1,2, - ,n.



3. CONTROL SYSTEM DESIGN

Let us define the trajectory tracking error as

e(t) = q(t) — qa(t),

where g4(t) represents the desired trajectory, and pro-
pose a following terminal sliding surface:

si = & + hi(t), (2)
where the function h; is assumed to satisfy the follow-
ing assumption.

Assumption 1 h; : Ry — R, h; € C![0,00), hi € L*®
and h; € LP N L™ for some p € [l,00). Where,
C'[0, 00) represents the set of all first differentiable
continuous functions defined on [0, co).

The function h; can be chosen arbitrarily such that
the tracking error goes to zero in finite time, that is,
h; represents the desired error velocity curve. And the
initial value of h; is set as h;(0) = ¢(0).

Let us define the following positive-definite function
as a Lyapunov function candidate:

V = l.‘;TM.sx.

. ®)

Differentiating (3) with respect to time and adopting
the skew-symmetricity of M{q) — 2C(q, ¢), we have

sTMs+sTCs
sT (M3 + Cs)
o7 (ij — MGy— Mh+ Cs)

1%

o7 (u+d—C<j—G—M(Ejd+h)+Cs)
T (u.+d—G— M(Ga+h)+C (s —q')),(4)
From (4), the equivalent control law is defined as

teg = M (fa+h)=C" (s -9 +G".  (5)
Now, we introduce the control scheme such as
u=u, — K esgn(s),

(6)

where means the element-by-element multiplica-
tion of two vectors, and

n
“o

K =M™ ic}'d+iz|+0'" |s — gl +G™ +d™ + 1,
n = {'71) ﬂz:"',ﬂn]T, ni>01
sgn(s) = [sgn(s1), sgn(s2), -+, sgn(sa) |7,
1 if ;>0
sgn(s) = 0 if ;=0 t1=1,2,-n,
-1 if s; <0

and the absolute of a vector denotes the vector
whose element has its absolute value, i.e.

lz| =
[lell |z2|’ R} |In| ]T'
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Using the above control law, we can derive a follow-
ing theorem for the occurrence of the sliding mode.

Theorem 1 For the robot manipulator {1) with the
control law (6), the system is in the sliding mode all
the time.

Proof: By inserting (6) in (4), we can obtain the

following inequality:

v sT{M°(iz+ijd)—C°(s—q‘)+G°

~ (M'"lh+<‘1‘d\+cmls—rj|+c"‘+d"‘+n)
esgn(s) +d= G — M (h+da) +C (s - d) }

(M - M) (h+da) + (- C") (s g)
+(¢"-6) - mm |h+ad o sgn(s)

O™ |5 = d] + sgn(s) — G™ o sgn(s)

+d — d™ e sgn(s) — nesgn(s)}

n
= nilsd.
=1

AN

From the above inequality, it is clear that V = 0 if
and only if s = 0, and so V < 0. Therefore, V() =
0 Vt > 0 because s(0) = 0 from (2). This also implies
that s(t) = 0. Thus, the system is forced to stay in the
sliding mode all the time.
[ ]
Therefore, the following theorem can be derived for
the stability of the overall system and the error con-
vergence time.

Theorem 2 If the control law (6) is applied to the
robot manipulator (1), then the overall system is glob-
ally exponentially stable and the tracking error con-
verges to zero in finite time.

Proof: From the Theorem 1, we know that s;(t) =
0 Vi. Furthermore, it is clear that the sliding mode
(si = 0) for the proposed terminal siding surface is sta-
ble and has a terminal attractor ¢; = 0 Vi. Therefore,
the overall system is globally exponentially stable and
the tracking error e converges to the terminal attractor
e = 0 in finite time. It completes the proof.

[ ]

Remark 1: Since h;(t) can be designed arbitrarily
by the control system designer, one can design a control
system such that the tracking error converges to zero
within a given desired relaxation time for any given
initial condition. For example, in case of the motor
control, the desired velocity curve is usually given as a
trapezoidal form. Then h{t) is given as in Fig. 1.

Remark 2: In the proposed sliding surface, a satu-
ration function can be used instead of the signum func-
tion, sgn(-). When a saturation function is used, the
tracking error cannot converge to zero in finite time.



4. SIMULATION

The simulation has been carried out for a two-link
robot manipulator model used by Yeung and Chen [12].
The dynamic equation is given by

M(q)§+Cl(g,9)¢+ G(g) =u+d,

where ¢ = (g1 2|7,

My, = (m +m2)rf +m2r§ + 2mgrira cos gz + Jy

My = M; = mori+moriracosge

Mz, = mari+J;

Ci1 = —2marirzgzsing

Ci2 = —mariragesings

Ca1 = myrirzgising;

Coy = O
Gi = {(m1+my)ricosq + maracos(q1 +g2)} g
Gz = maragcos(qr + g2).

The parameter values are also the same as those of
Yeung and Chen.

ry = lm, ro = O.8m,
J1=5kg-m, J2=5kg-m,
m; = 0.5kg,

0.5kg < my < 6.25kg,
Idll, |d2| < 20N -m.

In the simulation, we chose two h;(t)’s as following:

2t if 0<t<0.5

1 if 0.5<t<1
ha(t) 1-2(t—1) f1<e<15

0 otherwise

¢ t \?2
-6 —)+6(— if0<t<15
ha(t) = (1.5) + (1.5) ==
0 otherwise

That is to say, for the first link of the robot manipu-
lator h is chosen such that the constant acceleration,
constant velocity, constant deceleration which means
that the A is chosen for the motor to operate in the
manner of time sub-optimal. And for the second link
h is chosen such that the motor command is generated
with smooth form.

The results are shown in Figs. 2-4. In these figures,
the solid lines represent the response of the first link
and the dashed curves represent those of second link.

The tracking errors of the proposed controller are
presented in the Fig. 2. It can be seen that the tracking
error converges to zero in finite time (1.5 sec).

Fig. 3 shows the velocity curves. As can be seen in
this figure, ¢, shows trapezoidal curve, that is, accel-
eration part, constant velocity part, and deceleration
part. And é; represents more smooth velocity curve
than that of é;.

In the Fig. 4, phase portrait is given. In the figure, it
is clear that the sliding mode always occurrs. Thus, the
overall system shows robust property against external
disturbances and parameter uncertainties.
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5. CONCLUSIONS

In this paper, a variable structure control scheme
with the terminal sliding mode is proposed for robot
manipulators. The proposed sliding surface guarantees
that the output tracking error converges to zero in fi-
nite time under parametric uncertainties and external
disturbances. The simulation results showed that the
tracking error successfully converges to zero in finite
time. Furthermore, since the occurrence of the sliding
mode can be guaranteed all the time, the overall sys-
tem always shows robust property against parametric
uncertainties and external disturbances.
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